Goto

Collaborating Authors

 Paulen-Patterson, Drai


Fake News Detection: Comparative Evaluation of BERT-like Models and Large Language Models with Generative AI-Annotated Data

arXiv.org Artificial Intelligence

Fake news poses a significant threat to public opinion and social stability in modern society. This study presents a comparative evaluation of BERT-like encoder-only models and autoregressive decoder-only large language models (LLMs) for fake news detection. We introduce a dataset of news articles labeled with GPT-4 assistance (an AI-labeling method) and verified by human experts to ensure reliability. Both BERT-like encoder-only models and LLMs were fine-tuned on this dataset. Additionally, we developed an instruction-tuned LLM approach with majority voting during inference for label generation. Our analysis reveals that BERT-like models generally outperform LLMs in classification tasks, while LLMs demonstrate superior robustness against text perturbations. Compared to weak labels (distant supervision) data, the results show that AI labels with human supervision achieve better classification results. This study highlights the effectiveness of combining AI-based annotation with human oversight and demonstrates the performance of different families of machine learning models for fake news detection


FakeWatch: A Framework for Detecting Fake News to Ensure Credible Elections

arXiv.org Artificial Intelligence

In today's technologically driven world, the rapid spread of fake news, particularly during critical events like elections, poses a growing threat to the integrity of information. To tackle this challenge head-on, we introduce FakeWatch, a comprehensive framework carefully designed to detect fake news. Leveraging a newly curated dataset of North American election-related news articles, we construct robust classification models. Our framework integrates a model hub comprising of both traditional machine learning (ML) techniques, and state-of-the-art Language Models (LMs) to discern fake news effectively. Our objective is to provide the research community with adaptable and precise classification models adept at identifying fake news for the elections agenda. Quantitative evaluations of fake news classifiers on our dataset reveal that, while state-of-the-art LMs exhibit a slight edge over traditional ML models, classical models remain competitive due to their balance of accuracy and computational efficiency. Additionally, qualitative analyses shed light on patterns within fake news articles. We provide our labeled data at https://huggingface.co/datasets/newsmediabias/fake_news_elections_labelled_data and model https://huggingface.co/newsmediabias/FakeWatch for reproducibility and further research.