Paul, Saurabh
Column Selection via Adaptive Sampling
Paul, Saurabh, Magdon-Ismail, Malik, Drineas, Petros
Selecting a good column (or row) subset of massive data matrices has found many applications in data analysis and machine learning. We propose a new adaptive sampling algorithm that can be used to improve any relative-error column selection algorithm. Our algorithm delivers a tighter theoretical bound on the approximation error which we also demonstrate empirically using two well known relative-error column subset selection algorithms. Our experimental results on synthetic and real-world data show that our algorithm outperforms non-adaptive sampling as well as prior adaptive sampling approaches.
Feature Selection for Ridge Regression with Provable Guarantees
Paul, Saurabh, Drineas, Petros
We introduce single-set spectral sparsification as a deterministic sampling based feature selection technique for regularized least squares classification, which is the classification analogue to ridge regression. The method is unsupervised and gives worst-case guarantees of the generalization power of the classification function after feature selection with respect to the classification function obtained using all features. We also introduce leverage-score sampling as an unsupervised randomized feature selection method for ridge regression. We provide risk bounds for both single-set spectral sparsification and leverage-score sampling on ridge regression in the fixed design setting and show that the risk in the sampled space is comparable to the risk in the full-feature space. We perform experiments on synthetic and real-world datasets, namely a subset of TechTC-300 datasets, to support our theory. Experimental results indicate that the proposed methods perform better than the existing feature selection methods.
Feature Selection for Linear SVM with Provable Guarantees
Paul, Saurabh, Magdon-Ismail, Malik, Drineas, Petros
We give two provably accurate feature-selection techniques for the linear SVM. The algorithms run in deterministic and randomized time respectively. Our algorithms can be used in an unsupervised or supervised setting. The supervised approach is based on sampling features from support vectors. We prove that the margin in the feature space is preserved to within $\epsilon$-relative error of the margin in the full feature space in the worst-case. In the unsupervised setting, we also provide worst-case guarantees of the radius of the minimum enclosing ball, thereby ensuring comparable generalization as in the full feature space and resolving an open problem posed in Dasgupta et al. We present extensive experiments on real-world datasets to support our theory and to demonstrate that our method is competitive and often better than prior state-of-the-art, for which there are no known provable guarantees.
Random Projections for Linear Support Vector Machines
Paul, Saurabh, Boutsidis, Christos, Magdon-Ismail, Malik, Drineas, Petros
Let X be a data matrix of rank \rho, whose rows represent n points in d-dimensional space. The linear support vector machine constructs a hyperplane separator that maximizes the 1-norm soft margin. We develop a new oblivious dimension reduction technique which is precomputed and can be applied to any input matrix X. We prove that, with high probability, the margin and minimum enclosing ball in the feature space are preserved to within \epsilon-relative error, ensuring comparable generalization as in the original space in the case of classification. For regression, we show that the margin is preserved to \epsilon-relative error with high probability. We present extensive experiments with real and synthetic data to support our theory.