Paudice, Andrea
Revisiting Agnostic Boosting
da Cunha, Arthur, Høgsgaard, Mikael Møller, Paudice, Andrea, Sun, Yuxin
Boosting is a key method in statistical learning, allowing for converting weak learners into strong ones. While well studied in the realizable case, the statistical properties of weak-to-strong learning remains less understood in the agnostic setting, where there are no assumptions on the distribution of the labels. In this work, we propose a new agnostic boosting algorithm with substantially improved sample complexity compared to prior works under very general assumptions. Our approach is based on a reduction to the realizable case, followed by a margin-based filtering step to select high-quality hypotheses. We conjecture that the error rate achieved by our proposed method is optimal up to logarithmic factors.
General Tail Bounds for Non-Smooth Stochastic Mirror Descent
Eldowa, Khaled, Paudice, Andrea
In this paper, we provide novel tail bounds on the optimization error of Stochastic Mirror Descent for convex and Lipschitz objectives. Our analysis extends the existing tail bounds from the classical light-tailed Sub-Gaussian noise case to heavier-tailed noise regimes. We study the optimization error of the last iterate as well as the average of the iterates. We instantiate our results in two important cases: a class of noise with exponential tails and one with polynomial tails. A remarkable feature of our results is that they do not require an upper bound on the diameter of the domain. Finally, we support our theory with illustrative experiments that compare the behavior of the average of the iterates with that of the last iterate in heavy-tailed noise regimes.
An Improved Uniform Convergence Bound with Fat-Shattering Dimension
Colomboni, Roberto, Esposito, Emmanuel, Paudice, Andrea
The fat-shattering dimension characterizes the uniform convergence property of real-valued functions. The state-of-the-art upper bounds feature a multiplicative squared logarithmic factor on the sample complexity, leaving an open gap with the existing lower bound. We provide an improved uniform convergence bound that closes this gap.
Regret Analysis of Dyadic Search
Bachoc, François, Cesari, Tommaso, Colomboni, Roberto, Paudice, Andrea
We analyze the cumulative regret of the Dyadic Search algorithm of Bachoc et al. [2022]. In this section, we introduce the formal setting for our budget convex optimization problem. Given a bounded intervalI R, our goal is to minimize an unknown convex functionf I R picked by a possibly adversarial and adaptive environment by only requesting fuzzy evaluations of f. The interactions between the optimizer and the environment are described in Optimization Protocol 1. Optimization Protocol 1 input: A non-empty bounded interval I R (the domain of the unknown objective f) We stress that the environment is adaptive. The idea is that the more budget is invested, the more accurate approximation of the objectivef can be determined, in a quantifiable way.
High Probability Bounds for Stochastic Subgradient Schemes with Heavy Tailed Noise
Parletta, Daniela A., Paudice, Andrea, Pontil, Massimiliano, Salzo, Saverio
In this work we study high probability bounds for stochastic subgradient methods under heavy tailed noise. In this case the noise is only assumed to have finite variance as opposed to a sub-Gaussian distribution for which it is known that standard subgradient methods enjoys high probability bounds. We analyzed a clipped version of the projected stochastic subgradient method, where subgradient estimates are truncated whenever they have large norms. We show that this clipping strategy leads both to near optimal any-time and finite horizon bounds for many classical averaging schemes. Preliminary experiments are shown to support the validity of the method.
On Margin-Based Cluster Recovery with Oracle Queries
Bressan, Marco, Cesa-Bianchi, Nicolò, Lattanzi, Silvio, Paudice, Andrea
We study an active cluster recovery problem where, given a set of $n$ points and an oracle answering queries like "are these two points in the same cluster?", the task is to recover exactly all clusters using as few queries as possible. We begin by introducing a simple but general notion of margin between clusters that captures, as special cases, the margins used in previous work, the classic SVM margin, and standard notions of stability for center-based clusterings. Then, under our margin assumptions we design algorithms that, in a variety of settings, recover all clusters exactly using only $O(\log n)$ queries. For the Euclidean case, $\mathbb{R}^m$, we give an algorithm that recovers arbitrary convex clusters, in polynomial time, and with a number of queries that is lower than the best existing algorithm by $\Theta(m^m)$ factors. For general pseudometric spaces, where clusters might not be convex or might not have any notion of shape, we give an algorithm that achieves the $O(\log n)$ query bound, and is provably near-optimal as a function of the packing number of the space. Finally, for clusterings realized by binary concept classes, we give a combinatorial characterization of recoverability with $O(\log n)$ queries, and we show that, for many concept classes in Euclidean spaces, this characterization is equivalent to our margin condition. Our results show a deep connection between cluster margins and active cluster recoverability.
Exact Recovery of Mangled Clusters with Same-Cluster Queries
Bressan, Marco, Cesa-Bianchi, Nicolò, Lattanzi, Silvio, Paudice, Andrea
We study the cluster recovery problem in the semi-supervised active clustering framework. Given a finite set of input points, and an oracle revealing whether any two points lie in the same cluster, our goal is to recover all clusters exactly using as few queries as possible. To this end, we relax the spherical $k$-means cluster assumption of Ashtiani et al.\ to allow for arbitrary ellipsoidal clusters with margin. This removes the assumption that the clustering is center-based (i.e., defined through an optimization problem), and includes all those cases where spherical clusters are individually transformed by any combination of rotations, axis scalings, and point deletions. We show that, even in this much more general setting, it is still possible to recover the latent clustering exactly using a number of queries that scales only logarithmically with the number of input points. More precisely, we design an algorithm that, given $n$ points to be partitioned into $k$ clusters, uses $O(k^3 \ln k \ln n)$ oracle queries and $\tilde{O}(kn + k^3)$ time to recover the clustering with zero misclassification error. The $O(\cdot)$ notation hides an exponential dependence on the dimensionality of the clusters, which we show to be necessary thus characterizing the query complexity of the problem. Our algorithm is simple, easy to implement, and can also learn the clusters using low-stretch separators, a class of ellipsoids with additional theoretical guarantees. Experiments on large synthetic datasets confirm that we can reconstruct clusterings exactly and efficiently.
Correlation Clustering with Adaptive Similarity Queries
Bressan, Marco, Cesa-Bianchi, Nicolò, Paudice, Andrea, Vitale, Fabio
We investigate learning algorithms that use similarity queries to approximately solve correlation clustering problems. The input consists of $n$ objects; each pair of objects has a hidden binary similarity score that we can learn through a query. The goal is to use as few queries as possible to partition the objects into clusters so to achieve the optimal number OPT of disagreements with the scores. Our first set of contributions is algorithmic: we introduce ACC, a simple query-aware variant of an existing algorithm (KwikCluster, with expected error 3OPT but a vacuous $\mathcal{O}(n^2)$ worst-case bound on the number of queries) for which we prove several desirable properties. First, ACC has expected error 3OPT$ + \mathcal{O}(n^3/Q)$ when using $Q < \binom{n}{2}$ queries, and recovers KwikCluster's bound of 3OPT for $Q=\binom{n}{2}$. Second, ACC accurately recovers every adversarially perturbed latent cluster $C$. Under stronger conditions on $C$, ACC can even be used to recover exactly all clusters with high probability. Third, we show an efficient variant, \aggress, with the same expected error as ACC but using significantly less queries on some graphs. We empirically test our algorithms on real-world and synthetic datasets. Our second set of contributions is a nearly complete information-theoretic characterization of the query vs.\ error trade-off. First, using VC theory, for all $Q = \Omega(n)$ we prove the existence of algorithms with expected error at most OPT$+ n^{5/2}/\sqrt{Q}$, and at most $\widetilde{\mathcal{O}}\big(n^3/Q\big)$ if OPT=0. We then show that any randomized algorithm, when using at most $Q$ queries, must output a clustering with expected cost OPT$+ \Omega\big(n^3/Q\big)$, which matches the upper bound for $Q=\Theta(n)$. For the special case of OPT=0 we prove a weaker lower bound of $\Omega\big(n^2/\sqrt{Q}\big)$.
Label Sanitization against Label Flipping Poisoning Attacks
Paudice, Andrea, Muñoz-González, Luis, Lupu, Emil C.
Many machine learning systems rely on data collected in the wild from untrusted sources, exposing the learning algorithms to data poisoning. Attackers can inject malicious data in the training dataset to subvert the learning process, compromising the performance of the algorithm producing errors in a targeted or an indiscriminate way. Label flipping attacks are a special case of data poisoning, where the attacker can control the labels assigned to a fraction of the training points. Even if the capabilities of the attacker are constrained, these attacks have been shown to be effective to significantly degrade the performance of the system. In this paper we propose an efficient algorithm to perform optimal label flipping poisoning attacks and a mechanism to detect and relabel suspicious data points, mitigating the effect of such poisoning attacks.
Detection of Adversarial Training Examples in Poisoning Attacks through Anomaly Detection
Paudice, Andrea, Muñoz-González, Luis, Gyorgy, Andras, Lupu, Emil C.
Machine learning has become an important component for many systems and applications including computer vision, spam filtering, malware and network intrusion detection, among others. Despite the capabilities of machine learning algorithms to extract valuable information from data and produce accurate predictions, it has been shown that these algorithms are vulnerable to attacks. Data poisoning is one of the most relevant security threats against machine learning systems, where attackers can subvert the learning process by injecting malicious samples in the training data. Recent work in adversarial machine learning has shown that the so-called optimal attack strategies can successfully poison linear classifiers, degrading the performance of the system dramatically after compromising a small fraction of the training dataset. In this paper we propose a defence mechanism to mitigate the effect of these optimal poisoning attacks based on outlier detection. We show empirically that the adversarial examples generated by these attack strategies are quite different from genuine points, as no detectability constrains are considered to craft the attack. Hence, they can be detected with an appropriate pre-filtering of the training dataset.