Patil, Vaishakh
Tag Map: A Text-Based Map for Spatial Reasoning and Navigation with Large Language Models
Zhang, Mike, Qu, Kaixian, Patil, Vaishakh, Cadena, Cesar, Hutter, Marco
Large Language Models (LLM) have emerged as a tool for robots to generate task plans using common sense reasoning. For the LLM to generate actionable plans, scene context must be provided, often through a map. Recent works have shifted from explicit maps with fixed semantic classes to implicit open vocabulary maps based on queryable embeddings capable of representing any semantic class. However, embeddings cannot directly report the scene context as they are implicit, requiring further processing for LLM integration. To address this, we propose an explicit text-based map that can represent thousands of semantic classes while easily integrating with LLMs due to their text-based nature by building upon large-scale image recognition models. We study how entities in our map can be localized and show through evaluations that our text-based map localizations perform comparably to those from open vocabulary maps while using two to four orders of magnitude less memory. Real-robot experiments demonstrate the grounding of an LLM with the text-based map to solve user tasks.
ICGNet: A Unified Approach for Instance-Centric Grasping
Zurbrügg, René, Liu, Yifan, Engelmann, Francis, Kumar, Suryansh, Hutter, Marco, Patil, Vaishakh, Yu, Fisher
Accurate grasping is the key to several robotic tasks including assembly and household robotics. Executing a successful grasp in a cluttered environment requires multiple levels of scene understanding: First, the robot needs to analyze the geometric properties of individual objects to find feasible grasps. These grasps need to be compliant with the local object geometry. Second, for each proposed grasp, the robot needs to reason about the interactions with other objects in the scene. Finally, the robot must compute a collision-free grasp trajectory while taking into account the geometry of the target object. Most grasp detection algorithms directly predict grasp poses in a monolithic fashion, which does not capture the composability of the environment. In this paper, we introduce an end-to-end architecture for object-centric grasping. The method uses pointcloud data from a single arbitrary viewing direction as an input and generates an instance-centric representation for each partially observed object in the scene. This representation is further used for object reconstruction and grasp detection in cluttered table-top scenes. We show the effectiveness of the proposed method by extensively evaluating it against state-of-the-art methods on synthetic datasets, indicating superior performance for grasping and reconstruction. Additionally, we demonstrate real-world applicability by decluttering scenes with varying numbers of objects.
Lidar Line Selection with Spatially-Aware Shapley Value for Cost-Efficient Depth Completion
Adamczewski, Kamil, Sakaridis, Christos, Patil, Vaishakh, Van Gool, Luc
Lidar is a vital sensor for estimating the depth of a scene. Typical spinning lidars emit pulses arranged in several horizontal lines and the monetary cost of the sensor increases with the number of these lines. In this work, we present the new problem of optimizing the positioning of lidar lines to find the most effective configuration for the depth completion task. We propose a solution to reduce the number of lines while retaining the up-to-the-mark quality of depth completion. Our method consists of two components, (1) line selection based on the marginal contribution of a line computed via the Shapley value and (2) incorporating line position spread to take into account its need to arrive at image-wide depth completion. Spatially-aware Shapley values (SaS) succeed in selecting line subsets that yield a depth accuracy comparable to the full lidar input while using just half of the lines.