Plotting

 Pathirana, Pubudu N.


Enhancing Federated Learning Through Secure Cluster-Weighted Client Aggregation

arXiv.org Artificial Intelligence

Federated learning (FL) has emerged as a promising paradigm in machine learning, enabling collaborative model training across decentralized devices without the need for raw data sharing. In FL, a global model is trained iteratively on local datasets residing on individual devices, each contributing to the model's improvement. However, the heterogeneous nature of these local datasets, stemming from diverse user behaviours, device capabilities, and data distributions, poses a significant challenge. The inherent heterogeneity in federated learning gives rise to various issues, including model performance discrepancies, convergence challenges, and potential privacy concerns. As the global model progresses through rounds of training, the disparities in local data quality and quantity can impede the overall effectiveness of federated learning systems. Moreover, maintaining fairness and privacy across diverse user groups becomes a paramount concern. To address this issue, this paper introduces a novel FL framework, ClusterGuardFL, that employs dissimilarity scores, k-means clustering, and reconciliation confidence scores to dynamically assign weights to client updates. The dissimilarity scores between global and local models guide the formation of clusters, with cluster size influencing the weight allocation. Within each cluster, a reconciliation confidence score is calculated for individual data points, and a softmax layer generates customized weights for clients. These weights are utilized in the aggregation process, enhancing the model's robustness and privacy. Experimental results demonstrate the efficacy of the proposed approach in achieving improved model performance in diverse datasets.


Federated Learning with Differential Privacy: An Utility-Enhanced Approach

arXiv.org Artificial Intelligence

Abstract--Federated learning has emerged as an attractive approach to protect data privacy by eliminating the need for sharing clients' data while reducing communication costs compared with centralized machine learning algorithms. However, recent studies have shown that federated learning alone does not guarantee privacy, as private data may still be inferred from the uploaded parameters to the central server. In order to successfully avoid data leakage, adopting differential privacy (DP) in the local optimization process or in the local update aggregation process has emerged as two feasible ways for achieving sample-level or user-level privacy guarantees respectively, in federated learning models. However, compared to their non-private equivalents, these approaches suffer from a poor utility . T o improve the privacy-utility trade-off, we present a modification to these vanilla differentially private algorithms based on a Haar wavelet transformation step and a novel noise injection scheme that significantly lowers the asymptotic bound of the noise variance. We also present a holistic convergence analysis of our proposed algorithm, showing that our method yields better convergence performance than the vanilla DP algorithms. Numerical experiments on real-world datasets demonstrate that our method outperforms existing approaches in model utility while maintaining the same privacy guarantees. Machine learning (ML) has become an essential tool to analyze this data and extract valuable insights for various applications, including facial recognition, data analytics, weather prediction, and speech recognition, among others [1], [2], [3], [4], [5]. However, in real-world settings, data -- particularly personal data -- is often created and stored on end-user devices. The majority of traditional ML algorithms require the centralization of these training data, which involves collecting and processing data at a potent cloud-based server [6], [7]. This process carries significant risks to data integrity and privacy, particularly when it comes to personal data. Kanishka Ranaweera is with School of Engineering and Built Environment, Deakin University, Waurn Ponds, VIC 3216, Australia, and also with the Data61, CSIRO, Eveleigh, NSW 2015, Australia. Dinh C. Nguyen is with the Department of Electrical and Computer Engineering, The University of Alabama in Huntsville Alabama, USA. Pubudu N. Pathirana is with School of Engineering and Built Environment, Deakin University, Waurn Ponds, VIC 3216, Australia.


Multi-Objective Optimization for Privacy-Utility Balance in Differentially Private Federated Learning

arXiv.org Artificial Intelligence

--Federated learning (FL) enables collaborative model training across distributed clients without sharing raw data, making it a promising approach for privacy-preserving machine learning. However, ensuring differential privacy (DP) in FL presents challenges due to the trade-off between model utility and privacy protection. Clipping gradients before aggregation is a common strategy to limit privacy loss, but selecting an optimal clipping norm is non-trivial, as excessively high values compromise privacy, while overly restrictive clipping degrades model performance. In this work, we propose an adaptive clipping mechanism that dynamically adjusts the clipping norm using a multi-objective optimization framework. We theoretically analyze the convergence properties of our method and demonstrate its effectiveness through extensive experiments on MNIST, Fashion-MNIST, and CIF AR-10 datasets. Our results show that adaptive clipping consistently outperforms fixed-clipping baselines, achieving improved accuracy under the same privacy constraints. This work highlights the potential of dynamic clipping strategies to enhance privacy-utility trade-offs in differentially private federated learning. Federated Learning (FL) has emerged as a transformative paradigm for collaborative training of machine learning models without centralized data aggregation [1], [2]. Kanishka Ranaweera is with School of Engineering and Built Environment, Deakin University, Waurn Ponds, VIC 3216, Australia, and also with the Data61, CSIRO, Eveleigh, NSW 2015, Australia. David Smith is with Data61, CSIRO, Eveleigh, NSW 2015, Australia.


Quantum-Enhanced Transformers for Robust Acoustic Scene Classification in IoT Environments

arXiv.org Artificial Intelligence

The proliferation of Internet of Things (IoT) devices equipped with acoustic sensors necessitates robust acoustic scene classification (ASC) capabilities, even in noisy and data-limited environments. Traditional machine learning methods often struggle to generalize effectively under such conditions. To address this, we introduce Q-ASC, a novel Quantum-Inspired Acoustic Scene Classifier that leverages the power of quantum-inspired transformers. By integrating quantum concepts like superposition and entanglement, Q-ASC achieves superior feature learning and enhanced noise resilience compared to classical models. Furthermore, we introduce a Quantum Variational Autoencoder (QVAE) based data augmentation technique to mitigate the challenge of limited labeled data in IoT deployments. Extensive evaluations on the Tampere University of Technology (TUT) Acoustic Scenes 2016 benchmark dataset demonstrate that Q-ASC achieves remarkable accuracy between 68.3% and 88.5% under challenging conditions, outperforming state-of-the-art methods by over 5% in the best case. This research paves the way for deploying intelligent acoustic sensing in IoT networks, with potential applications in smart homes, industrial monitoring, and environmental surveillance, even in adverse acoustic environments.


VR Based Emotion Recognition Using Deep Multimodal Fusion With Biosignals Across Multiple Anatomical Domains

arXiv.org Artificial Intelligence

Emotion recognition is significantly enhanced by integrating multimodal biosignals and IMU data from multiple domains. In this paper, we introduce a novel multi-scale attention-based LSTM architecture, combined with Squeeze-and-Excitation (SE) blocks, by leveraging multi-domain signals from the head (Meta Quest Pro VR headset), trunk (Equivital Vest), and peripheral (Empatica Embrace Plus) during affect elicitation via visual stimuli. Signals from 23 participants were recorded, alongside self-assessed valence and arousal ratings after each stimulus. LSTM layers extract features from each modality, while multi-scale attention captures fine-grained temporal dependencies, and SE blocks recalibrate feature importance prior to classification. We assess which domain's signals carry the most distinctive emotional information during VR experiences, identifying key biosignals contributing to emotion detection. The proposed architecture, validated in a user study, demonstrates superior performance in classifying valance and arousal level (high / low), showcasing the efficacy of multi-domain and multi-modal fusion with biosignals (e.g., TEMP, EDA) with IMU data (e.g., accelerometer) for emotion recognition in real-world applications.


HierSFL: Local Differential Privacy-aided Split Federated Learning in Mobile Edge Computing

arXiv.org Artificial Intelligence

Federated Learning is a promising approach for learning from user data while preserving data privacy. However, the high requirements of the model training process make it difficult for clients with limited memory or bandwidth to participate. To tackle this problem, Split Federated Learning is utilized, where clients upload their intermediate model training outcomes to a cloud server for collaborative server-client model training. This methodology facilitates resource-constrained clients' participation in model training but also increases the training time and communication overhead. To overcome these limitations, we propose a novel algorithm, called Hierarchical Split Federated Learning (HierSFL), that amalgamates models at the edge and cloud phases, presenting qualitative directives for determining the best aggregation timeframes to reduce computation and communication expenses. By implementing local differential privacy at the client and edge server levels, we enhance privacy during local model parameter updates. Our experiments using CIFAR-10 and MNIST datasets show that HierSFL outperforms standard FL approaches with better training accuracy, training time, and communication-computing trade-offs. HierSFL offers a promising solution to mobile edge computing's challenges, ultimately leading to faster content delivery and improved mobile service quality.


Holistic Survey of Privacy and Fairness in Machine Learning

arXiv.org Artificial Intelligence

Privacy and fairness are two crucial pillars of responsible Artificial Intelligence (AI) and trustworthy Machine Learning (ML). Each objective has been independently studied in the literature with the aim of reducing utility loss in achieving them. Despite the significant interest attracted from both academia and industry, there remains an immediate demand for more in-depth research to unravel how these two objectives can be simultaneously integrated into ML models. As opposed to well-accepted trade-offs, i.e., privacy-utility and fairness-utility, the interrelation between privacy and fairness is not well-understood. While some works suggest a trade-off between the two objective functions, there are others that demonstrate the alignment of these functions in certain scenarios. To fill this research gap, we provide a thorough review of privacy and fairness in ML, including supervised, unsupervised, semi-supervised, and reinforcement learning. After examining and consolidating the literature on both objectives, we present a holistic survey on the impact of privacy on fairness, the impact of fairness on privacy, existing architectures, their interaction in application domains, and algorithms that aim to achieve both objectives while minimizing the utility sacrificed. Finally, we identify research challenges in achieving privacy and fairness concurrently in ML, particularly focusing on large language models.


Swarm Intelligence for Next-Generation Wireless Networks: Recent Advances and Applications

arXiv.org Artificial Intelligence

Due to the proliferation of smart devices and emerging applications, many next-generation technologies have been paid for the development of wireless networks. Even though commercial 5G has just been widely deployed in some countries, there have been initial efforts from academia and industrial communities for 6G systems. In such a network, a very large number of devices and applications are emerged, along with heterogeneity of technologies, architectures, mobile data, etc., and optimizing such a network is of utmost importance. Besides convex optimization and game theory, swarm intelligence (SI) has recently appeared as a promising optimization tool for wireless networks. As a new subdivision of artificial intelligence, SI is inspired by the collective behaviors of societies of biological species. In SI, simple agents with limited capabilities would achieve intelligent strategies for high-dimensional and challenging problems, so it has recently found many applications in next-generation wireless networks (NGN). However, researchers may not be completely aware of the full potential of SI techniques. In this work, our primary focus will be the integration of these two domains: NGN and SI. Firstly, we provide an overview of SI techniques from fundamental concepts to well-known optimizers. Secondly, we review the applications of SI to settle emerging issues in NGN, including spectrum management and resource allocation, wireless caching and edge computing, network security, and several other miscellaneous issues. Finally, we highlight open challenges and issues in the literature, and introduce some interesting directions for future research.