Patel, Siva Sankalp
StarCoder: may the source be with you!
Li, Raymond, Allal, Loubna Ben, Zi, Yangtian, Muennighoff, Niklas, Kocetkov, Denis, Mou, Chenghao, Marone, Marc, Akiki, Christopher, Li, Jia, Chim, Jenny, Liu, Qian, Zheltonozhskii, Evgenii, Zhuo, Terry Yue, Wang, Thomas, Dehaene, Olivier, Davaadorj, Mishig, Lamy-Poirier, Joel, Monteiro, João, Shliazhko, Oleh, Gontier, Nicolas, Meade, Nicholas, Zebaze, Armel, Yee, Ming-Ho, Umapathi, Logesh Kumar, Zhu, Jian, Lipkin, Benjamin, Oblokulov, Muhtasham, Wang, Zhiruo, Murthy, Rudra, Stillerman, Jason, Patel, Siva Sankalp, Abulkhanov, Dmitry, Zocca, Marco, Dey, Manan, Zhang, Zhihan, Fahmy, Nour, Bhattacharyya, Urvashi, Yu, Wenhao, Singh, Swayam, Luccioni, Sasha, Villegas, Paulo, Kunakov, Maxim, Zhdanov, Fedor, Romero, Manuel, Lee, Tony, Timor, Nadav, Ding, Jennifer, Schlesinger, Claire, Schoelkopf, Hailey, Ebert, Jan, Dao, Tri, Mishra, Mayank, Gu, Alex, Robinson, Jennifer, Anderson, Carolyn Jane, Dolan-Gavitt, Brendan, Contractor, Danish, Reddy, Siva, Fried, Daniel, Bahdanau, Dzmitry, Jernite, Yacine, Ferrandis, Carlos Muñoz, Hughes, Sean, Wolf, Thomas, Guha, Arjun, von Werra, Leandro, de Vries, Harm
The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder and StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 trillion tokens sourced from The Stack, a large collection of permissively licensed GitHub repositories with inspection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python tokens, resulting in the creation of StarCoder. We perform the most comprehensive evaluation of Code LLMs to date and show that StarCoderBase outperforms every open Code LLM that supports multiple programming languages and matches or outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder outperforms every model that is fine-tuned on Python, can be prompted to achieve 40\% pass@1 on HumanEval, and still retains its performance on other programming languages. We take several important steps towards a safe open-access model release, including an improved PII redaction pipeline and a novel attribution tracing tool, and make the StarCoder models publicly available under a more commercially viable version of the Open Responsible AI Model license.
Semi-Structured Object Sequence Encoders
Murthy, Rudra V, Bhat, Riyaz, Gunasekara, Chulaka, Patel, Siva Sankalp, Wan, Hui, Dhamecha, Tejas Indulal, Contractor, Danish, Danilevsky, Marina
In this paper we explore the task of modeling semi-structured object sequences; in particular, we focus our attention on the problem of developing a structure-aware input representation for such sequences. Examples of such data include user activity on websites, machine logs, and many others. This type of data is often represented as a sequence of sets of key-value pairs over time and can present modeling challenges due to an ever-increasing sequence length. We propose a two-part approach, which first considers each key independently and encodes a representation of its values over time; we then self-attend over these value-aware key representations to accomplish a downstream task. This allows us to operate on longer object sequences than existing methods. We introduce a novel shared-attention-head architecture between the two modules and present an innovative training schedule that interleaves the training of both modules with shared weights for some attention heads. Our experiments on multiple prediction tasks using real-world data demonstrate that our approach outperforms a unified network with hierarchical encoding, as well as other methods including a record-centric representation and a flattened representation of the sequence.
Knowledge-incorporating ESIM models for Response Selection in Retrieval-based Dialog Systems
Ganhotra, Jatin, Patel, Siva Sankalp, Fadnis, Kshitij
Goal-oriented dialog systems, which can be trained end-to-end without manually encoding domain-specific features, show tremendous promise in the customer support use-case e.g. flight booking, hotel reservation, technical support, student advising etc. These dialog systems must learn to interact with external domain knowledge to achieve the desired goal e.g. recommending courses to a student, booking a table at a restaurant etc. This paper presents extended Enhanced Sequential Inference Model (ESIM) models: a) K-ESIM (Knowledge-ESIM), which incorporates the external domain knowledge and b) T-ESIM (Targeted-ESIM), which leverages information from similar conversations to improve the prediction accuracy. Our proposed models and the baseline ESIM model are evaluated on the Ubuntu and Advising datasets in the Sentence Selection track of the latest Dialog System Technology Challenge (DSTC7), where the goal is to find the correct next utterance, given a partial conversation, from a set of candidates. Our preliminary results suggest that incorporating external knowledge sources and leveraging information from similar dialogs leads to performance improvements for predicting the next utterance.