Goto

Collaborating Authors

 Patel, Dhaval


LLM Assisted Anomaly Detection Service for Site Reliability Engineers: Enhancing Cloud Infrastructure Resilience

arXiv.org Artificial Intelligence

This paper introduces a scalable Anomaly Detection Service with a generalizable API tailored for industrial time-series data, designed to assist Site Reliability Engineers (SREs) in managing cloud infrastructure. The service enables efficient anomaly detection in complex data streams, supporting proactive identification and resolution of issues. Furthermore, it presents an innovative approach to anomaly modeling in cloud infrastructure by utilizing Large Language Models (LLMs) to understand key components, their failure modes, and behaviors. A suite of algorithms for detecting anomalies is offered in univariate and multivariate time series data, including regression-based, mixture-model-based, and semi-supervised approaches. We provide insights into the usage patterns of the service, with over 500 users and 200,000 API calls in a year. The service has been successfully applied in various industrial settings, including IoT-based AI applications. We have also evaluated our system on public anomaly benchmarks to show its effectiveness. By leveraging it, SREs can proactively identify potential issues before they escalate, reducing downtime and improving response times to incidents, ultimately enhancing the overall customer experience. We plan to extend the system to include time series foundation models, enabling zero-shot anomaly detection capabilities.


AutoAI-TS: AutoAI for Time Series Forecasting

arXiv.org Artificial Intelligence

A large number of time series forecasting models including traditional statistical models, machine learning models and more recently deep learning have been proposed in the literature. However, choosing the right model along with good parameter values that performs well on a given data is still challenging. Automatically providing a good set of models to users for a given dataset saves both time and effort from using trial-and-error approaches with a wide variety of available models along with parameter optimization. We present AutoAI for Time Series Forecasting (AutoAI-TS) that provides users with a zero configuration (zero-conf ) system to efficiently train, optimize and choose best forecasting model among various classes of models for the given dataset. With its flexible zero-conf design, AutoAI-TS automatically performs all the data preparation, model creation, parameter optimization, training and model selection for users and provides a trained model that is ready to use. For given data, AutoAI-TS utilizes a wide variety of models including classical statistical models, Machine Learning (ML) models, statistical-ML hybrid models and deep learning models along with various transformations to create forecasting pipelines. It then evaluates and ranks pipelines using the proposed T-Daub mechanism to choose the best pipeline. The paper describe in detail all the technical aspects of AutoAI-TS along with extensive benchmarking on a variety of real world data sets for various use-cases. Benchmark results show that AutoAI-TS, with no manual configuration from the user, automatically trains and selects pipelines that on average outperform existing state-of-the-art time series forecasting toolkits.


A Transformer-based Framework for Multivariate Time Series Representation Learning

arXiv.org Artificial Intelligence

In this work we propose for the first time a transformer-based framework for unsupervised representation learning of multivariate time series. Pre-trained models can be potentially used for downstream tasks such as regression and classification, forecasting and missing value imputation. By evaluating our models on several benchmark datasets for multivariate time series regression and classification, we show that not only does our modeling approach represent the most successful method employing unsupervised learning of multivariate time series presented to date, but also that it exceeds the current state-of-the-art performance of supervised methods; it does so even when the number of training samples is very limited, while offering computational efficiency. Finally, we demonstrate that unsupervised pre-training of our transformer models offers a substantial performance benefit over fully supervised learning, even without leveraging additional unlabeled data, i.e., by reusing the same data samples through the unsupervised objective.