Pase, Francesco
Effective Communication with Dynamic Feature Compression
Talli, Pietro, Pase, Francesco, Chiariotti, Federico, Zanella, Andrea, Zorzi, Michele
The remote wireless control of industrial systems is one of the major use cases for 5G and beyond systems: in these cases, the massive amounts of sensory information that need to be shared over the wireless medium may overload even high-capacity connections. Consequently, solving the effective communication problem by optimizing the transmission strategy to discard irrelevant information can provide a significant advantage, but is often a very complex task. In this work, we consider a prototypal system in which an observer must communicate its sensory data to a robot controlling a task (e.g., a mobile robot in a factory). We then model it as a remote Partially Observable Markov Decision Process (POMDP), considering the effect of adopting semantic and effective communication-oriented solutions on the overall system performance. We split the communication problem by considering an ensemble Vector Quantized Variational Autoencoder (VQ-VAE) encoding, and train a Deep Reinforcement Learning (DRL) agent to dynamically adapt the quantization level, considering both the current state of the environment and the memory of past messages. We tested the proposed approach on the well-known CartPole reference control problem, obtaining a significant performance increase over traditional approaches.
A Distributed Neural Linear Thompson Sampling Framework to Achieve URLLC in Industrial IoT
Pase, Francesco, Giordani, Marco, Cavallero, Sara, Schellmann, Malte, Eichinger, Josef, Verdone, Roberto, Zorzi, Michele
Industrial Internet of Things (IIoT) networks will provide Ultra-Reliable Low-Latency Communication (URLLC) to support critical processes underlying the production chains. However, standard protocols for allocating wireless resources may not optimize the latency-reliability trade-off, especially for uplink communication. For example, centralized grant-based scheduling can ensure almost zero collisions, but introduces delays in the way resources are requested by the User Equipments (UEs) and granted by the gNB. In turn, distributed scheduling (e.g., based on random access), in which UEs autonomously choose the resources for transmission, may lead to potentially many collisions especially when the traffic increases. In this work we propose DIStributed combinatorial NEural linear Thompson Sampling (DISNETS), a novel scheduling framework that combines the best of the two worlds. By leveraging a feedback signal from the gNB and reinforcement learning, the UEs are trained to autonomously optimize their uplink transmissions by selecting the available resources to minimize the number of collisions, without additional message exchange to/from the gNB. DISNETS is a distributed, multi-agent adaptation of the Neural Linear Thompson Sampling (NLTS) algorithm, which has been further extended to admit multiple parallel actions. We demonstrate the superior performance of DISNETS in addressing URLLC in IIoT scenarios compared to other baselines.
Communication-Efficient Federated Learning through Importance Sampling
Isik, Berivan, Pase, Francesco, Gunduz, Deniz, Koyejo, Sanmi, Weissman, Tsachy, Zorzi, Michele
The high communication cost of sending model updates from the clients to the server is a significant bottleneck for scalable federated learning (FL). Among existing approaches, state-of-the-art bitrate-accuracy tradeoffs have been achieved using stochastic compression methods -- in which the client $n$ sends a sample from a client-only probability distribution $q_{\phi^{(n)}}$, and the server estimates the mean of the clients' distributions using these samples. However, such methods do not take full advantage of the FL setup where the server, throughout the training process, has side information in the form of a pre-data distribution $p_{\theta}$ that is close to the client's distribution $q_{\phi^{(n)}}$ in Kullback-Leibler (KL) divergence. In this work, we exploit this closeness between the clients' distributions $q_{\phi^{(n)}}$'s and the side information $p_{\theta}$ at the server, and propose a framework that requires approximately $D_{KL}(q_{\phi^{(n)}}|| p_{\theta})$ bits of communication. We show that our method can be integrated into many existing stochastic compression frameworks such as FedPM, Federated SGLD, and QSGD to attain the same (and often higher) test accuracy with up to $50$ times reduction in the bitrate.
Semantic Communication of Learnable Concepts
Pase, Francesco, Kobus, Szymon, Gunduz, Deniz, Zorzi, Michele
We consider the problem of communicating a sequence of concepts, i.e., unknown and potentially stochastic maps, which can be observed only through examples, i.e., the mapping rules are unknown. The transmitter applies a learning algorithm to the available examples, and extracts knowledge from the data by optimizing a probability distribution over a set of models, i.e., known functions, which can better describe the observed data, and so potentially the underlying concepts. The transmitter then needs to communicate the learned models to a remote receiver through a rate-limited channel, to allow the receiver to decode the models that can describe the underlying sampled concepts as accurately as possible in their semantic space. After motivating our analysis, we propose the formal problem of communicating concepts, and provide its rate-distortion characterization, pointing out its connection with the concepts of empirical and strong coordination in a network. We also provide a bound for the distortion-rate function.
Sparse Random Networks for Communication-Efficient Federated Learning
Isik, Berivan, Pase, Francesco, Gunduz, Deniz, Weissman, Tsachy, Zorzi, Michele
One main challenge in federated learning is the large communication cost of exchanging weight updates from clients to the server at each round. While prior work has made great progress in compressing the weight updates through gradient compression methods, we propose a radically different approach that does not update the weights at all. Instead, our method freezes the weights at their initial random values and learns how to sparsify the random network for the best performance. To this end, the clients collaborate in training a stochastic binary mask to find the optimal sparse random network within the original one. At the end of the training, the final model is a sparse network with random weights - or a subnetwork inside the dense random network. We show improvements in accuracy, communication (less than 1 bit per parameter (bpp)), convergence speed, and final model size (less than 1 bpp) over relevant baselines on MNIST, EMNIST, CIFAR-10, and CIFAR-100 datasets, in the low bitrate regime. Federated learning (FL) is a distributed learning framework where clients collaboratively train a model by performing local training on their data and by sharing their local updates with a server every few iterations, which in turn aggregates the local updates to create a global model, that is then transmitted to the clients for the next round of training. While being an appealing approach for enabling model training without the need to collect client data at the server, uplink communication of local updates is a significant bottleneck in FL (Kairouz et al., 2021). In this work, while aiming for communication efficiency in FL, we take a radically different approach from prior work, and propose a strategy that does not require communication of weight updates.
Semantic and Effective Communication for Remote Control Tasks with Dynamic Feature Compression
Talli, Pietro, Pase, Francesco, Chiariotti, Federico, Zanella, Andrea, Zorzi, Michele
The coordination of robotic swarms and the remote wireless control of industrial systems are among the major use cases for 5G and beyond systems: in these cases, the massive amounts of sensory information that needs to be shared over the wireless medium can overload even high-capacity connections. Consequently, solving the effective communication problem by optimizing the transmission strategy to discard irrelevant information can provide a significant advantage, but is often a very complex task. In this work, we consider a prototypal system in which an observer must communicate its sensory data to an actor controlling a task (e.g., a mobile robot in a factory). We then model it as a remote Partially Observable Markov Decision Process (POMDP), considering the effect of adopting semantic and effective communication-oriented solutions on the overall system performance. We split the communication problem by considering an ensemble Vector Quantized Variational Autoencoder (VQ-VAE) encoding, and train a Deep Reinforcement Learning (DRL) agent to dynamically adapt the quantization level, considering both the current state of the environment and the memory of past messages. We tested the proposed approach on the well-known CartPole reference control problem, obtaining a significant performance increase over traditional approaches
Distributed Resource Allocation for URLLC in IIoT Scenarios: A Multi-Armed Bandit Approach
Pase, Francesco, Giordani, Marco, Cuozzo, Giampaolo, Cavallero, Sara, Eichinger, Joseph, Verdone, Roberto, Zorzi, Michele
This paper addresses the problem of enabling inter-machine Ultra-Reliable Low-Latency Communication (URLLC) in future 6G Industrial Internet of Things (IIoT) networks. As far as the Radio Access Network (RAN) is concerned, centralized pre-configured resource allocation requires scheduling grants to be disseminated to the User Equipments (UEs) before uplink transmissions, which is not efficient for URLLC, especially in case of flexible/unpredictable traffic. To alleviate this burden, we study a distributed, user-centric scheme based on machine learning in which UEs autonomously select their uplink radio resources without the need to wait for scheduling grants or preconfiguration of connections. Using simulation, we demonstrate that a Multi-Armed Bandit (MAB) approach represents a desirable solution to allocate resources with URLLC in mind in an IIoT environment, in case of both periodic and aperiodic traffic, even considering highly populated networks and aggressive traffic.