Pasande, Mohammad
Stochastic First-Order Learning for Large-Scale Flexibly Tied Gaussian Mixture Model
Pasande, Mohammad, Hosseini, Reshad, Araabi, Babak Nadjar
Gaussian Mixture Models (GMMs) are one of the most potent parametric density models used extensively in many applications. Flexibly-tied factorization of the covariance matrices in GMMs is a powerful approach for coping with the challenges of common GMMs when faced with high-dimensional data and complex densities which often demand a large number of Gaussian components. However, the expectation-maximization algorithm for fitting flexibly-tied GMMs still encounters difficulties with streaming and very large dimensional data. To overcome these challenges, this paper suggests the use of first-order stochastic optimization algorithms. Specifically, we propose a new stochastic optimization algorithm on the manifold of orthogonal matrices. Through numerous empirical results on both synthetic and real datasets, we observe that stochastic optimization methods can outperform the expectation-maximization algorithm in terms of attaining better likelihood, needing fewer epochs for convergence, and consuming less time per each epoch.
Bayesian Dynamic DAG Learning: Application in Discovering Dynamic Effective Connectome of Brain
Bagheri, Abdolmahdi, Pasande, Mohammad, Bello, Kevin, Araabi, Babak Nadjar, Akhondi-Asl, Alireza
Understanding the complex mechanisms of the brain can be unraveled by extracting the Dynamic Effective Connectome (DEC). Recently, score-based Directed Acyclic Graph (DAG) discovery methods have shown significant improvements in extracting the causal structure and inferring effective connectivity. However, learning DEC through these methods still faces two main challenges: one with the fundamental impotence of high-dimensional dynamic DAG discovery methods and the other with the low quality of fMRI data. In this paper, we introduce Bayesian Dynamic DAG learning with M-matrices Acyclicity characterization \textbf{(BDyMA)} method to address the challenges in discovering DEC. The presented dynamic causal model enables us to discover bidirected edges as well. Leveraging an unconstrained framework in the BDyMA method leads to more accurate results in detecting high-dimensional networks, achieving sparser outcomes, making it particularly suitable for extracting DEC. Additionally, the score function of the BDyMA method allows the incorporation of prior knowledge into the process of dynamic causal discovery which further enhances the accuracy of results. Comprehensive simulations on synthetic data and experiments on Human Connectome Project (HCP) data demonstrate that our method can handle both of the two main challenges, yielding more accurate and reliable DEC compared to state-of-the-art and baseline methods. Additionally, we investigate the trustworthiness of DTI data as prior knowledge for DEC discovery and show the improvements in DEC discovery when the DTI data is incorporated into the process.