Parziale, Antonio
SM-DTW: Stability Modulated Dynamic Time Warping for signature verification
Parziale, Antonio, Diaz, Moises, Ferrer, Miguel A., Marcelli, Angelo
Building upon findings in computational model of handwriting learning and execution, we introduce the concept of stability to explain the difference between the actual movements performed during multiple execution of the subject's signature, and conjecture that the most stable parts of the signature should play a paramount role in evaluating the similarity between a questioned signature and the reference ones during signature verification. We then introduce the Stability Modulated Dynamic Time Warping algorithm for incorporating the stability regions, i.e. the most similar parts between two signatures, into the distance measure between a pair of signatures computed by the Dynamic Time Warping for signature verification. Experiments were conducted on two datasets largely adopted for performance evaluation. Experimental results show that the proposed algorithm improves the performance of the baseline system and compares favourably with other top performing signature verification systems.
Machine Learning for Health symposium 2023 -- Findings track
Hegselmann, Stefan, Parziale, Antonio, Shanmugam, Divya, Tang, Shengpu, Asiedu, Mercy Nyamewaa, Chang, Serina, Hartvigsen, Thomas, Singh, Harvineet
A collection of the accepted Findings papers that were presented at the 3rd Machine Learning for Health symposium (ML4H 2023), which was held on December 10, 2023, in New Orleans, Louisiana, USA. ML4H 2023 invited high-quality submissions on relevant problems in a variety of health-related disciplines including healthcare, biomedicine, and public health. Two submission tracks were offered: the archival Proceedings track, and the non-archival Findings track. Proceedings were targeted at mature work with strong technical sophistication and a high impact to health. The Findings track looked for new ideas that could spark insightful discussion, serve as valuable resources for the community, or could enable new collaborations. Submissions to the Proceedings track, if not accepted, were automatically considered for the Findings track. All the manuscripts submitted to ML4H Symposium underwent a double-blind peer-review process.
Machine Learning for Health symposium 2022 -- Extended Abstract track
Parziale, Antonio, Agrawal, Monica, Joshi, Shalmali, Chen, Irene Y., Tang, Shengpu, Oala, Luis, Subbaswamy, Adarsh
A collection of the extended abstracts that were presented at the 2nd Machine Learning for Health symposium (ML4H 2022), which was held both virtually and in person on November 28, 2022, in New Orleans, Louisiana, USA. Machine Learning for Health (ML4H) is a longstanding venue for research into machine learning for health, including both theoretical works and applied works. ML4H 2022 featured two submission tracks: a proceedings track, which encompassed full-length submissions of technically mature and rigorous work, and an extended abstract track, which would accept less mature, but innovative research for discussion. All the manuscripts submitted to ML4H Symposium underwent a double-blind peer-review process. Extended abstracts included in this collection describe innovative machine learning research focused on relevant problems in health and biomedicine.