Goto

Collaborating Authors

 Parygin, Pavel


Lightweight Multi-System Multivariate Interconnection and Divergence Discovery

arXiv.org Artificial Intelligence

Identifying outlier behavior among sensors and subsystems is essential for discovering faults and facilitating diagnostics in large systems. At the same time, exploring large systems with numerous multivariate data sets is challenging. This study presents a lightweight interconnection and divergence discovery mechanism (LIDD) to identify abnormal behavior in multi-system environments. The approach employs a multivariate analysis technique that first estimates the similarity heatmaps among the sensors for each system and then applies information retrieval algorithms to provide relevant multi-level interconnection and discrepancy details. Our experiment on the readout systems of the Hadron Calorimeter of the Compact Muon Solenoid (CMS) experiment at CERN demonstrates the effectiveness of the proposed method. Our approach clusters readout systems and their sensors consistent with the expected calorimeter interconnection configurations, while capturing unusual behavior in divergent clusters and estimating their root causes.


Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter

arXiv.org Artificial Intelligence

The compact muon solenoid (CMS) experiment is a general-purpose detector for high-energy collision at the large hadron collider (LHC) at CERN. It employs an online data quality monitoring (DQM) system to promptly spot and diagnose particle data acquisition problems to avoid data quality loss. In this study, we present semi-supervised spatio-temporal anomaly detection (AD) monitoring for the physics particle reading channels of the hadronic calorimeter (HCAL) of the CMS using three-dimensional digi-occupancy map data of the DQM. We propose the GraphSTAD system, which employs convolutional and graph neural networks to learn local spatial characteristics induced by particles traversing the detector, and global behavior owing to shared backend circuit connections and housing boxes of the channels, respectively. Recurrent neural networks capture the temporal evolution of the extracted spatial features. We have validated the accuracy of the proposed AD system in capturing diverse channel fault types using the LHC Run-2 collision data sets. The GraphSTAD system has achieved production-level accuracy and is being integrated into the CMS core production system--for real-time monitoring of the HCAL. We have also provided a quantitative performance comparison with alternative benchmark models to demonstrate the promising leverage of the presented system.