Goto

Collaborating Authors

 Partzsch, Johannes


Deploying Machine Learning Models to Ahead-of-Time Runtime on Edge Using MicroTVM

arXiv.org Artificial Intelligence

In the past few years, more and more AI applications have been applied to edge devices. However, models trained by data scientists with machine learning frameworks, such as PyTorch or TensorFlow, can not be seamlessly executed on edge. In this paper, we develop an end-to-end code generator parsing a pre-trained model to C source libraries for the backend using MicroTVM, a machine learning compiler framework extension addressing inference on bare metal devices. An analysis shows that specific compute-intensive operators can be easily offloaded to the dedicated accelerator with a Universal Modular Accelerator (UMA) interface, while others are processed in the CPU cores. By using the automatically generated ahead-of-time C runtime, we conduct a hand gesture recognition experiment on an ARM Cortex M4F core.


Pattern representation and recognition with accelerated analog neuromorphic systems

arXiv.org Machine Learning

Despite being originally inspired by the central nervous system, artificial neural networks have diverged from their biological archetypes as they have been remodeled to fit particular tasks. In this paper, we review several possibilites to reverse map these architectures to biologically more realistic spiking networks with the aim of emulating them on fast, low-power neuromorphic hardware. Since many of these devices employ analog components, which cannot be perfectly controlled, finding ways to compensate for the resulting effects represents a key challenge. Here, we discuss three different strategies to address this problem: the addition of auxiliary network components for stabilizing activity, the utilization of inherently robust architectures and a training method for hardware-emulated networks that functions without perfect knowledge of the system's dynamics and parameters. For all three scenarios, we corroborate our theoretical considerations with experimental results on accelerated analog neuromorphic platforms.


Waveform Driven Plasticity in BiFeO3 Memristive Devices: Model and Implementation

Neural Information Processing Systems

Memristive devices have recently been proposed as efficient implementations of plastic synapses in neuromorphic systems. The plasticity in these memristive devices, i.e. their resistance change, is defined by the applied waveforms. This behavior resembles biological synapses, whose plasticity is also triggered by mechanisms that are determined by local waveforms. However, learning in memristive devices has so far been approached mostly on a pragmatic technological level. The focus seems to be on finding any waveform that achieves spike-timing-dependent plasticity (STDP), without regard to the biological veracity of said waveforms or to further important forms of plasticity. Bridging this gap, we make use of a plasticity model driven by neuron waveforms that explains a large number of experimental observations and adapt it to the characteristics of the recently introduced BiFeO$_3$ memristive material. Based on this approach, we show STDP for the first time for this material, with learning window replication superior to previous memristor-based STDP implementations. We also demonstrate in measurements that it is possible to overlay short and long term plasticity at a memristive device in the form of the well-known triplet plasticity. To the best of our knowledge, this is the first implementations of triplet plasticity on any physical memristive device.