Partsey, Ruslan
Towards Open-World Mobile Manipulation in Homes: Lessons from the Neurips 2023 HomeRobot Open Vocabulary Mobile Manipulation Challenge
Yenamandra, Sriram, Ramachandran, Arun, Khanna, Mukul, Yadav, Karmesh, Vakil, Jay, Melnik, Andrew, Büttner, Michael, Harz, Leon, Brown, Lyon, Nandi, Gora Chand, PS, Arjun, Yadav, Gaurav Kumar, Kala, Rahul, Haschke, Robert, Luo, Yang, Zhu, Jinxin, Han, Yansen, Lu, Bingyi, Gu, Xuan, Liu, Qinyuan, Zhao, Yaping, Ye, Qiting, Dou, Chenxiao, Chua, Yansong, Kuzma, Volodymyr, Humennyy, Vladyslav, Partsey, Ruslan, Francis, Jonathan, Chaplot, Devendra Singh, Chhablani, Gunjan, Clegg, Alexander, Gervet, Theophile, Jain, Vidhi, Ramrakhya, Ram, Szot, Andrew, Wang, Austin, Yang, Tsung-Yen, Edsinger, Aaron, Kemp, Charlie, Shah, Binit, Kira, Zsolt, Batra, Dhruv, Mottaghi, Roozbeh, Bisk, Yonatan, Paxton, Chris
In order to develop robots that can effectively serve as versatile and capable home assistants, it is crucial for them to reliably perceive and interact with a wide variety of objects across diverse environments. To this end, we proposed Open Vocabulary Mobile Manipulation as a key benchmark task for robotics: finding any object in a novel environment and placing it on any receptacle surface within that environment. We organized a NeurIPS 2023 competition featuring both simulation and real-world components to evaluate solutions to this task. Our baselines on the most challenging version of this task, using real perception in simulation, achieved only an 0.8% success rate; by the end of the competition, the best participants achieved an 10.8\% success rate, a 13x improvement. We observed that the most successful teams employed a variety of methods, yet two common threads emerged among the best solutions: enhancing error detection and recovery, and improving the integration of perception with decision-making processes. In this paper, we detail the results and methodologies used, both in simulation and real-world settings. We discuss the lessons learned and their implications for future research. Additionally, we compare performance in real and simulated environments, emphasizing the necessity for robust generalization to novel settings.
HomeRobot Open Vocabulary Mobile Manipulation Challenge 2023 Participant Report (Team KuzHum)
Kuzma, Volodymyr, Humennyy, Vladyslav, Partsey, Ruslan
We report an improvements to NeurIPS 2023 HomeRobot: Open Vocabulary Mobile Manipulation (OVMM) Challenge reinforcement learning baseline. More specifically, we propose more accurate semantic segmentation module, along with better place skill policy, and high-level heuristic that outperforms the baseline by 2.4% of overall success rate (sevenfold improvement) and 8.2% of partial success rate (1.75 times improvement) on Test Standard split of the challenge dataset. With aforementioned enhancements incorporated our agent scored 3rd place in the challenge on both simulation and real-world stages.
Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots
Puig, Xavier, Undersander, Eric, Szot, Andrew, Cote, Mikael Dallaire, Yang, Tsung-Yen, Partsey, Ruslan, Desai, Ruta, Clegg, Alexander William, Hlavac, Michal, Min, So Yeon, Vondruš, Vladimír, Gervet, Theophile, Berges, Vincent-Pierre, Turner, John M., Maksymets, Oleksandr, Kira, Zsolt, Kalakrishnan, Mrinal, Malik, Jitendra, Chaplot, Devendra Singh, Jain, Unnat, Batra, Dhruv, Rai, Akshara, Mottaghi, Roozbeh
We present Habitat 3.0: a simulation platform for studying collaborative human-robot tasks in home environments. Habitat 3.0 offers contributions across three dimensions: (1) Accurate humanoid simulation: addressing challenges in modeling complex deformable bodies and diversity in appearance and motion, all while ensuring high simulation speed. (2) Human-in-the-loop infrastructure: enabling real human interaction with simulated robots via mouse/keyboard or a VR interface, facilitating evaluation of robot policies with human input. (3) Collaborative tasks: studying two collaborative tasks, Social Navigation and Social Rearrangement. Social Navigation investigates a robot's ability to locate and follow humanoid avatars in unseen environments, whereas Social Rearrangement addresses collaboration between a humanoid and robot while rearranging a scene. These contributions allow us to study end-to-end learned and heuristic baselines for human-robot collaboration in-depth, as well as evaluate them with humans in the loop. Our experiments demonstrate that learned robot policies lead to efficient task completion when collaborating with unseen humanoid agents and human partners that might exhibit behaviors that the robot has not seen before. Additionally, we observe emergent behaviors during collaborative task execution, such as the robot yielding space when obstructing a humanoid agent, thereby allowing the effective completion of the task by the humanoid agent. Furthermore, our experiments using the human-in-the-loop tool demonstrate that our automated evaluation with humanoids can provide an indication of the relative ordering of different policies when evaluated with real human collaborators. Habitat 3.0 unlocks interesting new features in simulators for Embodied AI, and we hope it paves the way for a new frontier of embodied human-AI interaction capabilities.