Parthasarathy, Dinesh
Towards Automated Algebraic Multigrid Preconditioner Design Using Genetic Programming for Large-Scale Laser Beam Welding Simulations
Parthasarathy, Dinesh, Bevilacqua, Tommaso, Lanser, Martin, Klawonn, Axel, Köstler, Harald
Multigrid methods are asymptotically optimal algorithms ideal for large-scale simulations. But, they require making numerous algorithmic choices that significantly influence their efficiency. Unlike recent approaches that learn optimal multigrid components using machine learning techniques, we adopt a complementary strategy here, employing evolutionary algorithms to construct efficient multigrid cycles from available individual components. This technology is applied to finite element simulations of the laser beam welding process. The thermo-elastic behavior is described by a coupled system of time-dependent thermo-elasticity equations, leading to nonlinear and ill-conditioned systems. The nonlinearity is addressed using Newton's method, and iterative solvers are accelerated with an algebraic multigrid (AMG) preconditioner using hypre BoomerAMG interfaced via PETSc. This is applied as a monolithic solver for the coupled equations. To further enhance solver efficiency, flexible AMG cycles are introduced, extending traditional cycle types with level-specific smoothing sequences and non-recursive cycling patterns. These are automatically generated using genetic programming, guided by a context-free grammar containing AMG rules. Numerical experiments demonstrate the potential of these approaches to improve solver performance in large-scale laser beam welding simulations.
Evolving Algebraic Multigrid Methods Using Grammar-Guided Genetic Programming
Parthasarathy, Dinesh, Mitchell, Wayne Bradford, Köstler, Harald
Multigrid methods despite being known to be asymptotically optimal algorithms, depend on the careful selection of their individual components for efficiency. Also, they are mostly restricted to standard cycle types like V-, F-, and W-cycles. We use grammar rules to generate arbitrary-shaped cycles, wherein the smoothers and their relaxation weights are chosen independently at each step within the cycle. We call this a flexible multigrid cycle. These flexible cycles are used in Algebraic Multigrid (AMG) methods with the help of grammar rules and optimized using genetic programming. The flexible AMG methods are implemented in the software library of hypre, and the programs are optimized separately for two cases: a standalone AMG solver for a 3D anisotropic problem and an AMG preconditioner with conjugate gradient for a multiphysics code. We observe that the optimized flexible cycles provide higher efficiency and better performance than the standard cycle types.
C-MCTS: Safe Planning with Monte Carlo Tree Search
Parthasarathy, Dinesh, Kontes, Georgios, Plinge, Axel, Mutschler, Christopher
The Constrained Markov Decision Process (CMDP) formulation allows to solve safety-critical decision making tasks that are subject to constraints. While CMDPs have been extensively studied in the Reinforcement Learning literature, little attention has been given to sampling-based planning algorithms such as MCTS for solving them. Previous approaches perform conservatively with respect to costs as they avoid constraint violations by using Monte Carlo cost estimates that suffer from high variance. We propose Constrained MCTS (C-MCTS), which estimates cost using a safety critic that is trained with Temporal Difference learning in an offline phase prior to agent deployment. The critic limits exploration by pruning unsafe trajectories within MCTS during deployment. C-MCTS satisfies cost constraints but operates closer to the constraint boundary, achieving higher rewards than previous work. As a nice byproduct, the planner is more efficient w.r.t. planning steps. Most importantly, under model mismatch between the planner and the real world, C-MCTS is less susceptible to cost violations than previous work.