Parmar, Paritosh
A Decade of Action Quality Assessment: Largest Systematic Survey of Trends, Challenges, and Future Directions
Yin, Hao, Parmar, Paritosh, Xu, Daoliang, Zhang, Yang, Zheng, Tianyou, Fu, Weiwei
Action Quality Assessment (AQA) -- the ability to quantify the quality of human motion, actions, or skill levels and provide feedback -- has far-reaching implications in areas such as low-cost physiotherapy, sports training, and workforce development. As such, it has become a critical field in computer vision & video understanding over the past decade. Significant progress has been made in AQA methodologies, datasets, & applications, yet a pressing need remains for a comprehensive synthesis of this rapidly evolving field. In this paper, we present a thorough survey of the AQA landscape, systematically reviewing over 200 research papers using the preferred reporting items for systematic reviews & meta-analyses (PRISMA) framework. We begin by covering foundational concepts & definitions, then move to general frameworks & performance metrics, & finally discuss the latest advances in methodologies & datasets. This survey provides a detailed analysis of research trends, performance comparisons, challenges, & future directions. Through this work, we aim to offer a valuable resource for both newcomers & experienced researchers, promoting further exploration & progress in AQA. Data are available at https://haoyin116.github.io/Survey_of_AQA/
CausalChaos! Dataset for Comprehensive Causal Action Question Answering Over Longer Causal Chains Grounded in Dynamic Visual Scenes
Parmar, Paritosh, Peh, Eric, Chen, Ruirui, Lam, Ting En, Chen, Yuhan, Tan, Elston, Fernando, Basura
Causal video question answering (QA) has garnered increasing interest, yet existing datasets often lack depth in causal reasoning. To address this gap, we capitalize on the unique properties of cartoons and construct CausalChaos!, a novel, challenging causal Why-QA dataset built upon the iconic "Tom and Jerry" cartoon series. Cartoons use the principles of animation that allow animators to create expressive, unambiguous causal relationships between events to form a coherent storyline. Utilizing these properties, along with thought-provoking questions and multi-level answers (answer and detailed causal explanation), our questions involve causal chains that interconnect multiple dynamic interactions between characters and visual scenes. These factors demand models to solve more challenging, yet well-defined causal relationships. We also introduce hard incorrect answer mining, including a causally confusing version that is even more challenging. While models perform well, there is much room for improvement, especially, on open-ended answers. We identify more advanced/explicit causal relationship modeling & joint modeling of vision and language as the immediate areas for future efforts to focus upon. Along with the other complementary datasets, our new challenging dataset will pave the way for these developments in the field.
Hierarchical NeuroSymbolic Approach for Comprehensive and Explainable Action Quality Assessment
Okamoto, Lauren, Parmar, Paritosh
Action quality assessment (AQA) applies computer vision to quantitatively assess the performance or execution of a human action. Current AQA approaches are end-to-end neural models, which lack transparency and tend to be biased because they are trained on subjective human judgements as ground-truth. To address these issues, we introduce a neuro-symbolic paradigm for AQA, which uses neural networks to abstract interpretable symbols from video data and makes quality assessments by applying rules to those symbols. We take diving as the case study. We found that domain experts prefer our system and find it more informative than purely neural approaches to AQA in diving. Our system also achieves state-of-the-art action recognition and temporal segmentation, and automatically generates a detailed report that breaks the dive down into its elements and provides objective scoring with visual evidence. As verified by a group of domain experts, this report may be used to assist judges in scoring, help train judges, and provide feedback to divers. Annotated training data and code: https://github.com/laurenok24/NSAQA.
Learning to Visually Connect Actions and their Effects
Peh, Eric, Parmar, Paritosh, Fernando, Basura
In this work, we introduce the novel concept of visually Connecting Actions and Their Effects (CATE) in video understanding. CATE can have applications in areas like task planning and learning from demonstration. We propose different CATE-based task formulations, such as action selection and action specification, where video understanding models connect actions and effects at semantic and fine-grained levels. We observe that different formulations produce representations capturing intuitive action properties. We also design various baseline models for action selection and action specification. Despite the intuitive nature of the task, we observe that models struggle, and humans outperform them by a large margin. The study aims to establish a foundation for future efforts, showcasing the flexibility and versatility of connecting actions and effects in video understanding, with the hope of inspiring advanced formulations and models.