Goto

Collaborating Authors

 Park, Sungjoon


FedTherapist: Mental Health Monitoring with User-Generated Linguistic Expressions on Smartphones via Federated Learning

arXiv.org Artificial Intelligence

Psychiatrists diagnose mental disorders via the linguistic use of patients. Still, due to data privacy, existing passive mental health monitoring systems use alternative features such as activity, app usage, and location via mobile devices. We propose FedTherapist, a mobile mental health monitoring system that utilizes continuous speech and keyboard input in a privacy-preserving way via federated learning. We explore multiple model designs by comparing their performance and overhead for FedTherapist to overcome the complex nature of on-device language model training on smartphones. We further propose a Context-Aware Language Learning (CALL) methodology to effectively utilize smartphones' large and noisy text for mental health signal sensing. Our IRB-approved evaluation of the prediction of self-reported depression, stress, anxiety, and mood from 46 participants shows higher accuracy of FedTherapist compared with the performance with non-language features, achieving 0.15 AUROC improvement and 8.21% MAE reduction.


Towards standardizing Korean Grammatical Error Correction: Datasets and Annotation

arXiv.org Artificial Intelligence

Research on Korean grammatical error correction (GEC) is limited, compared to other major languages such as English. We attribute this problematic circumstance to the lack of a carefully designed evaluation benchmark for Korean GEC. In this work, we collect three datasets from different sources (Kor-Lang8, Kor-Native, and Kor-Learner) that covers a wide range of Korean grammatical errors. Considering the nature of Korean grammar, We then define 14 error types for Korean and provide KAGAS (Korean Automatic Grammatical error Annotation System), which can automatically annotate error types from parallel corpora. We use KAGAS on our datasets to make an evaluation benchmark for Korean, and present baseline models trained from our datasets. We show that the model trained with our datasets significantly outperforms the currently used statistical Korean GEC system (Hanspell) on a wider range of error types, demonstrating the diversity and usefulness of the datasets. The implementations and datasets are open-sourced.


Conversation Model Fine-Tuning for Classifying Client Utterances in Counseling Dialogues

arXiv.org Machine Learning

The recent surge of text-based online counseling applications enables us to collect and analyze interactions between counselors and clients. A dataset of those interactions can be used to learn to automatically classify the client utterances into categories that help counselors in diagnosing client status and predicting counseling outcome. With proper anonymization, we collect counselor-client dialogues, define meaningful categories of client utterances with professional counselors, and develop a novel neural network model for classifying the client utterances. The central idea of our model, ConvMFiT, is a pre-trained conversation model which consists of a general language model built from an out-of-domain corpus and two role-specific language models built from unlabeled in-domain dialogues. The classification result shows that ConvMFiT outperforms state-of-the-art comparison models. Further, the attention weights in the learned model confirm that the model finds expected linguistic patterns for each category.


MultilingualWikipedia: Editors of Primary Language Contribute to More Complex Articles

AAAI Conferences

For many people who speak more than one language,their language proficiency for each of the languagesvaries. We can conjecture that people who use onelanguage (primary language) more than another wouldshow higher language proficiency in that primary language.It is, however, difficult to observe and quantifythat problem because natural language use is difficultto collect in large amounts. We identify Wikipedia asa great resource for studying multilingualism, and weconduct a quantitative analysis of the language complexityof primary and non-primary users of English,German, and Spanish. Our preliminary results indicatethat there are indeed consistent differences of languagecomplexity in the Wikipedia articles chosen by primaryand non-primary users, as well as differences in the editsby the two groups of users.