Goto

Collaborating Authors

 Park, Serim


GiGL: Large-Scale Graph Neural Networks at Snapchat

arXiv.org Artificial Intelligence

Recent advances in graph machine learning (ML) with the introduction of Graph Neural Networks (GNNs) have led to a widespread interest in applying these approaches to business applications at scale. GNNs enable differentiable end-to-end (E2E) learning of model parameters given graph structure which enables optimization towards popular node, edge (link) and graph-level tasks. While the research innovation in new GNN layers and training strategies has been rapid, industrial adoption and utility of GNNs has lagged considerably due to the unique scale challenges that large-scale graph ML problems create. In this work, we share our approach to training, inference, and utilization of GNNs at Snapchat. To this end, we present GiGL (Gigantic Graph Learning), an open-source library to enable large-scale distributed graph ML to the benefit of researchers, ML engineers, and practitioners. We use GiGL internally at Snapchat to manage the heavy lifting of GNN workflows, including graph data preprocessing from relational DBs, subgraph sampling, distributed training, inference, and orchestration. GiGL is designed to interface cleanly with open-source GNN modeling libraries prominent in academia like PyTorch Geometric (PyG), while handling scaling and productionization challenges that make it easier for internal practitioners to focus on modeling. GiGL is used in multiple production settings, and has powered over 35 launches across multiple business domains in the last 2 years in the contexts of friend recommendation, content recommendation and advertising. This work details high-level design and tools the library provides, scaling properties, case studies in diverse business settings with industry-scale graphs, and several key lessons learned in employing graph ML at scale on large social data. GiGL is open-sourced at https://github.com/snap-research/GiGL.


TwHIN-BERT: A Socially-Enriched Pre-trained Language Model for Multilingual Tweet Representations at Twitter

arXiv.org Artificial Intelligence

Pre-trained language models (PLMs) are fundamental for natural language processing applications. Most existing PLMs are not tailored to the noisy user-generated text on social media, and the pre-training does not factor in the valuable social engagement logs available in a social network. We present TwHIN-BERT, a multilingual language model productionized at Twitter, trained on in-domain data from the popular social network. TwHIN-BERT differs from prior pre-trained language models as it is trained with not only text-based self-supervision, but also with a social objective based on the rich social engagements within a Twitter heterogeneous information network (TwHIN). Our model is trained on 7 billion tweets covering over 100 distinct languages, providing a valuable representation to model short, noisy, user-generated text. We evaluate our model on various multilingual social recommendation and semantic understanding tasks and demonstrate significant metric improvement over established pre-trained language models. We open-source TwHIN-BERT and our curated hashtag prediction and social engagement benchmark datasets to the research community.


HABERTOR: An Efficient and Effective Deep Hatespeech Detector

arXiv.org Artificial Intelligence

We present our HABERTOR model for detecting hatespeech in large scale user-generated content. Inspired by the recent success of the BERT model, we propose several modifications to BERT to enhance the performance on the downstream hatespeech classification task. HABERTOR inherits BERT's architecture, but is different in four aspects: (i) it generates its own vocabularies and is pre-trained from the scratch using the largest scale hatespeech dataset; (ii) it consists of Quaternion-based factorized components, resulting in a much smaller number of parameters, faster training and inferencing, as well as less memory usage; (iii) it uses our proposed multi-source ensemble heads with a pooling layer for separate input sources, to further enhance its effectiveness; and (iv) it uses a regularized adversarial training with our proposed fine-grained and adaptive noise magnitude to enhance its robustness. Through experiments on the large-scale real-world hatespeech dataset with 1.4M annotated comments, we show that HABERTOR works better than 15 state-of-the-art hatespeech detection methods, including fine-tuning Language Models. In particular, comparing with BERT, our HABERTOR is 4~5 times faster in the training/inferencing phase, uses less than 1/3 of the memory, and has better performance, even though we pre-train it by using less than 1% of the number of words. Our generalizability analysis shows that HABERTOR transfers well to other unseen hatespeech datasets and is a more efficient and effective alternative to BERT for the hatespeech classification.