Goto

Collaborating Authors

 Park, Sangjun


MentalAgora: A Gateway to Advanced Personalized Care in Mental Health through Multi-Agent Debating and Attribute Control

arXiv.org Artificial Intelligence

As mental health issues globally escalate, there is a tremendous need for advanced digital support systems. We introduce MentalAgora, a novel framework employing large language models enhanced by interaction between multiple agents for tailored mental health support. This framework operates through three stages: strategic debating, tailored counselor creation, and response generation, enabling the dynamic customization of responses based on individual user preferences and therapeutic needs. We conduct experiments utilizing a high-quality evaluation dataset TherapyTalk crafted with mental health professionals, shwoing that MentalAgora generates expert-aligned and user preference-enhanced responses. Our evaluations, including experiments and user studies, demonstrate that MentalAgora aligns with professional standards and effectively meets user preferences, setting a new benchmark for digital mental health interventions.


Memoria: Resolving Fateful Forgetting Problem through Human-Inspired Memory Architecture

arXiv.org Artificial Intelligence

Transformer-based models still face the structural limitation of fixed context length in processing long sequence input despite their effectiveness in various fields. While various external memory techniques were introduced, most previous techniques fail to avoid fateful forgetting, where even the most important memories are inevitably forgotten after a sufficient number of time steps. We designed Memoria, a memory system for artificial neural networks, drawing inspiration from humans and applying various neuroscientific and psychological theories related to memory. Experimentally, we demonstrated the effectiveness of Memoria in tasks such as sorting and language modeling, surpassing conventional techniques.


Into-TTS : Intonation Template Based Prosody Control System

arXiv.org Artificial Intelligence

Intonations play an important role in delivering the intention of a speaker. However, current end-to-end TTS systems often fail to model proper intonations. To alleviate this problem, we propose a novel, intuitive method to synthesize speech in different intonations using predefined intonation templates. Prior to TTS model training, speech data are grouped into intonation templates in an unsupervised manner. Two proposed modules are added to the end-to-end TTS framework: an intonation predictor and an intonation encoder. The intonation predictor recommends a suitable intonation template to the given text. The intonation encoder, attached to the text encoder output, synthesizes speech abiding the requested intonation template. Main contributions of our paper are: (a) an easy-to-use intonation control system covering a wide range of users; (b) better performance in wrapping speech in a requested intonation with improved objective and subjective evaluation; and (c) incorporating a pre-trained language model for intonation modelling. Audio samples are available at https://srtts.github.io/IntoTTS.