Goto

Collaborating Authors

 Park, Nokyung


EGTR: Extracting Graph from Transformer for Scene Graph Generation

arXiv.org Artificial Intelligence

Scene Graph Generation (SGG) is a challenging task of detecting objects and predicting relationships between objects. After DETR was developed, one-stage SGG models based on a one-stage object detector have been actively studied. However, complex modeling is used to predict the relationship between objects, and the inherent relationship between object queries learned in the multi-head self-attention of the object detector has been neglected. We propose a lightweight one-stage SGG model that extracts the relation graph from the various relationships learned in the multi-head self-attention layers of the DETR decoder. By fully utilizing the self-attention by-products, the relation graph can be extracted effectively with a shallow relation extraction head. Considering the dependency of the relation extraction task on the object detection task, we propose a novel relation smoothing technique that adjusts the relation label adaptively according to the quality of the detected objects. By the relation smoothing, the model is trained according to the continuous curriculum that focuses on object detection task at the beginning of training and performs multi-task learning as the object detection performance gradually improves. Furthermore, we propose a connectivity prediction task that predicts whether a relation exists between object pairs as an auxiliary task of the relation extraction. We demonstrate the effectiveness and efficiency of our method for the Visual Genome and Open Image V6 datasets. Our code is publicly available at https://github.com/naver-ai/egtr.


InstructBooth: Instruction-following Personalized Text-to-Image Generation

arXiv.org Artificial Intelligence

Personalizing text-to-image models using a limited set of images for a specific object has been explored in subject-specific image generation. However, existing methods often encounter challenges in aligning with text prompts due to overfitting to the limited training images. In this work, we introduce InstructBooth, a novel method designed to enhance image-text alignment in personalized text-to-image models. Our approach first personalizes text-to-image models with a small number of subject-specific images using a unique identifier. After personalization, we fine-tune personalized text-to-image models using reinforcement learning to maximize a reward that quantifies image-text alignment. Additionally, we propose complementary techniques to increase the synergy between these two processes. Our method demonstrates superior image-text alignment compared to baselines while maintaining personalization ability. In human evaluations, InstructBooth outperforms DreamBooth when considering all comprehensive factors.