Goto

Collaborating Authors

 Park, Chanyoung


Retrieval-Retro: Retrieval-based Inorganic Retrosynthesis with Expert Knowledge

arXiv.org Artificial Intelligence

While inorganic retrosynthesis planning is essential in the field of chemical science, the application of machine learning in this area has been notably less explored compared to organic retrosynthesis planning. In this paper, we propose Retrieval-Retro for inorganic retrosynthesis planning, which implicitly extracts the precursor information of reference materials that are retrieved from the knowledge base regarding domain expertise in the field. Specifically, instead of directly employing the precursor information of reference materials, we propose implicitly extracting it with various attention layers, which enables the model to learn novel synthesis recipes more effectively. Moreover, during retrieval, we consider the thermodynamic relationship between target material and precursors, which is essential domain expertise in identifying the most probable precursor set among various options. Extensive experiments demonstrate the superiority of Retrieval-Retro in retrosynthesis planning, especially in discovering novel synthesis recipes, which is crucial for materials discovery. The source code for Retrieval-Retro is available at https://github.com/HeewoongNoh/Retrieval-Retro.


Molecule Language Model with Augmented Pairs and Expertise Transfer

arXiv.org Artificial Intelligence

Understanding the molecules and their textual descriptions via molecule language models (MoLM) recently got a surge of interest among researchers. However, unique challenges exist in the field of MoLM due to 1) a limited amount of molecule-text paired data and 2) missing expertise that occurred due to the specialized areas of focus among the experts. To this end, we propose AMOLE, which 1) augments molecule-text pairs with structural similarity preserving loss, and 2) transfers the expertise between the molecules. Extensive experiments on various downstream tasks demonstrate the superiority of AMOLE in comprehending molecules and their descriptions, highlighting its potential for application in real-world drug discovery.


Self-Explainable Temporal Graph Networks based on Graph Information Bottleneck

arXiv.org Artificial Intelligence

Temporal Graph Neural Networks (TGNN) have the ability to capture both the graph topology and dynamic dependencies of interactions within a graph over time. There has been a growing need to explain the predictions of TGNN models due to the difficulty in identifying how past events influence their predictions. Since the explanation model for a static graph cannot be readily applied to temporal graphs due to its inability to capture temporal dependencies, recent studies proposed explanation models for temporal graphs. However, existing explanation models for temporal graphs rely on post-hoc explanations, requiring separate models for prediction and explanation, which is limited in two aspects: efficiency and accuracy of explanation. In this work, we propose a novel built-in explanation framework for temporal graphs, called Self-Explainable Temporal Graph Networks based on Graph Information Bottleneck (TGIB). TGIB provides explanations for event occurrences by introducing stochasticity in each temporal event based on the Information Bottleneck theory. Experimental results demonstrate the superiority of TGIB in terms of both the link prediction performance and explainability compared to state-of-the-art methods. This is the first work that simultaneously performs prediction and explanation for temporal graphs in an end-to-end manner.


SIMPLOT: Enhancing Chart Question Answering by Distilling Essentials

arXiv.org Artificial Intelligence

Recently, interpreting complex charts with logical reasoning has emerged as challenges due to the development of vision-language models. A prior state-of-the-art (SOTA) model has presented an end-to-end method that leverages the vision-language model to convert charts into table format utilizing Large Language Model (LLM) for reasoning. However, unlike natural images, charts contain a mix of essential and irrelevant information required for chart reasoning, and we discover that this characteristic can lower the performance of chart-to-table extraction. In this paper, we introduce SIMPLOT, a method designed to extract only the elements necessary for chart reasoning. The proposed method involves two steps: 1) training to mimic a simple plot that contains only the essential information from a complex chart for table extraction, followed by 2) performing reasoning based on the table. Our model enables accurate chart reasoning without the need for additional annotations or datasets, and its effectiveness is demonstrated through various experiments. Furthermore, we propose a novel prompt mimicking how human interpret charts for more accurate reasoning. Our source code is available at https://github.com/sangwu99/Simplot.


Continual Traffic Forecasting via Mixture of Experts

arXiv.org Artificial Intelligence

The real-world traffic networks undergo expansion through the installation of new sensors, implying that the traffic patterns continually evolve over time. Incrementally training a model on the newly added sensors would make the model forget the past knowledge, i.e., catastrophic forgetting, while retraining the model on the entire network to capture these changes is highly inefficient. To address these challenges, we propose a novel Traffic Forecasting Mixture of Experts (TFMoE) for traffic forecasting under evolving networks. The main idea is to segment the traffic flow into multiple homogeneous groups, and assign an expert model responsible for a specific group. This allows each expert model to concentrate on learning and adapting to a specific set of patterns, while minimizing interference between the experts during training, thereby preventing the dilution or replacement of prior knowledge, which is a major cause of catastrophic forgetting. Through extensive experiments on a real-world long-term streaming network dataset, PEMSD3-Stream, we demonstrate the effectiveness and efficiency of TFMoE.


Temporal Graph Learning Recurrent Neural Network for Traffic Forecasting

arXiv.org Artificial Intelligence

Accurate traffic flow forecasting is a crucial research topic in transportation management. However, it is a challenging problem due to rapidly changing traffic conditions, high nonlinearity of traffic flow, and complex spatial and temporal correlations of road networks. Most existing studies either try to capture the spatial dependencies between roads using the same semantic graph over different time steps, or assume all sensors on the roads are equally likely to be connected regardless of the distance between them. However, we observe that the spatial dependencies between roads indeed change over time, and two distant roads are not likely to be helpful to each other when predicting the traffic flow, both of which limit the performance of existing studies. In this paper, we propose Temporal Graph Learning Recurrent Neural Network (TGLRN) to address these problems. More precisely, to effectively model the nature of time series, we leverage Recurrent Neural Networks (RNNs) to dynamically construct a graph at each time step, thereby capturing the time-evolving spatial dependencies between roads (i.e., microscopic view). Simultaneously, we provide the Adaptive Structure Information to the model, ensuring that close and consecutive sensors are considered to be more important for predicting the traffic flow (i.e., macroscopic view). Furthermore, to endow TGLRN with robustness, we introduce an edge sampling strategy when constructing the graph at each time step, which eventually leads to further improvements on the model performance. Experimental results on four commonly used real-world benchmark datasets show the effectiveness of TGLRN.


Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System

arXiv.org Artificial Intelligence

Collaborative filtering recommender systems (CF-RecSys) have shown successive results in enhancing the user experience on social media and e-commerce platforms. However, as CF-RecSys struggles under cold scenarios with sparse user-item interactions, recent strategies have focused on leveraging modality information of user/items (e.g., text or images) based on pre-trained modality encoders and Large Language Models (LLMs). Despite their effectiveness under cold scenarios, we observe that they underperform simple traditional collaborative filtering models under warm scenarios due to the lack of collaborative knowledge. In this work, we propose an efficient All-round LLM-based Recommender system, called A-LLMRec, that excels not only in the cold scenario but also in the warm scenario. Our main idea is to enable an LLM to directly leverage the collaborative knowledge contained in a pre-trained state-of-the-art CF-RecSys so that the emergent ability of the LLM as well as the high-quality user/item embeddings that are already trained by the state-of-the-art CF-RecSys can be jointly exploited. This approach yields two advantages: (1) model-agnostic, allowing for integration with various existing CF-RecSys, and (2) efficiency, eliminating the extensive fine-tuning typically required for LLM-based recommenders. Our extensive experiments on various real-world datasets demonstrate the superiority of A-LLMRec in various scenarios, including cold/warm, few-shot, cold user, and cross-domain scenarios. Beyond the recommendation task, we also show the potential of A-LLMRec in generating natural language outputs based on the understanding of the collaborative knowledge by performing a favorite genre prediction task. Our code is available at https://github.com/ghdtjr/A-LLMRec .


LLM4SGG: Large Language Models for Weakly Supervised Scene Graph Generation

arXiv.org Artificial Intelligence

Weakly-Supervised Scene Graph Generation (WSSGG) research has recently emerged as an alternative to the fully-supervised approach that heavily relies on costly annotations. In this regard, studies on WSSGG have utilized image captions to obtain unlocalized triplets while primarily focusing on grounding the unlocalized triplets over image regions. However, they have overlooked the two issues involved in the triplet formation process from the captions: 1) Semantic over-simplification issue arises when extracting triplets from captions, where fine-grained predicates in captions are undesirably converted into coarse-grained predicates, resulting in a long-tailed predicate distribution, and 2) Low-density scene graph issue arises when aligning the triplets in the caption with entity/predicate classes of interest, where many triplets are discarded and not used in training, leading to insufficient supervision. To tackle the two issues, we propose a new approach, i.e., Large Language Model for weakly-supervised SGG (LLM4SGG), where we mitigate the two issues by leveraging the LLM's in-depth understanding of language and reasoning ability during the extraction of triplets from captions and alignment of entity/predicate classes with target data. To further engage the LLM in these processes, we adopt the idea of Chain-of-Thought and the in-context few-shot learning strategy. To validate the effectiveness of LLM4SGG, we conduct extensive experiments on Visual Genome and GQA datasets, showing significant improvements in both Recall@K and mean Recall@K compared to the state-of-the-art WSSGG methods. A further appeal is that LLM4SGG is data-efficient, enabling effective model training with a small amount of training images.


DSLR: Diversity Enhancement and Structure Learning for Rehearsal-based Graph Continual Learning

arXiv.org Artificial Intelligence

We investigate the replay buffer in rehearsal-based approaches for graph continual learning (GCL) methods. Existing rehearsal-based GCL methods select the most representative nodes for each class and store them in a replay buffer for later use in training subsequent tasks. However, we discovered that considering only the class representativeness of each replayed node makes the replayed nodes to be concentrated around the center of each class, incurring a potential risk of overfitting to nodes residing in those regions, which aggravates catastrophic forgetting. Moreover, as the rehearsal-based approach heavily relies on a few replayed nodes to retain knowledge obtained from previous tasks, involving the replayed nodes that have irrelevant neighbors in the model training may have a significant detrimental impact on model performance. In this paper, we propose a GCL model named DSLR, specifically, we devise a coverage-based diversity (CD) approach to consider both the class representativeness and the diversity within each class of the replayed nodes. Moreover, we adopt graph structure learning (GSL) to ensure that the replayed nodes are connected to truly informative neighbors. Extensive experimental results demonstrate the effectiveness and efficiency of DSLR. Our source code is available at https://github.com/seungyoon-Choi/DSLR_official.


Self-Guided Robust Graph Structure Refinement

arXiv.org Artificial Intelligence

Recent studies have revealed that GNNs are vulnerable to adversarial attacks. To defend against such attacks, robust graph structure refinement (GSR) methods aim at minimizing the effect of adversarial edges based on node features, graph structure, or external information. However, we have discovered that existing GSR methods are limited by narrowassumptions, such as assuming clean node features, moderate structural attacks, and the availability of external clean graphs, resulting in the restricted applicability in real-world scenarios. In this paper, we propose a self-guided GSR framework (SG-GSR), which utilizes a clean sub-graph found within the given attacked graph itself. Furthermore, we propose a novel graph augmentation and a group-training strategy to handle the two technical challenges in the clean sub-graph extraction: 1) loss of structural information, and 2) imbalanced node degree distribution. Extensive experiments demonstrate the effectiveness of SG-GSR under various scenarios including non-targeted attacks, targeted attacks, feature attacks, e-commerce fraud, and noisy node labels. Our code is available at https://github.com/yeonjun-in/torch-SG-GSR.