Goto

Collaborating Authors

 Parikh, Tapan


'Since Lawyers are Males..': Examining Implicit Gender Bias in Hindi Language Generation by LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are increasingly being used to generate text across various languages, for tasks such as translation, customer support, and education. Despite these advancements, LLMs show notable gender biases in English, which become even more pronounced when generating content in relatively underrepresented languages like Hindi. This study explores implicit gender biases in Hindi text generation and compares them to those in English. We developed Hindi datasets inspired by WinoBias to examine stereotypical patterns in responses from models like GPT-4o and Claude-3 sonnet. Our results reveal a significant gender bias of 87.8% in Hindi, compared to 33.4% in English GPT-4o generation, with Hindi responses frequently relying on gender stereotypes related to occupations, power hierarchies, and social class. This research underscores the variation in gender biases across languages and provides considerations for navigating these biases in generative AI systems.


MobileWorks: Designing for Quality in a Managed Crowdsourcing Architecture (Extended Abstract)

AAAI Conferences

Online labor marketplaces offer the potential to automate a variety of tasks too difficult for computers, but present requesters with significant difficulties in obtaining accurate results. We share experiences from building MobileWorks, a crowd platform that departs from the marketplace model to provide robust, high-quality results. Three architectural contributions yield measurably improved accuracy on input tasks.  A dynamic work routing system identifies expertise in the crowd and ensures that all work posted into the system is completed with bounded completion times and at fair worker prices. A peer management system ensures that incorrect answers are prevented by experienced members of the crowd. Last, social interaction techniques give the best workers the ability and incentives to manage, teach & supervise other members of the crowd, as well as to clarify tasks. This process filters worker error and allows the crowd to collectively learn how to solve unfamiliar tasks. (extended abstract)