Parambath, Shameem A. Puthiya
Max-Utility Based Arm Selection Strategy For Sequential Query Recommendations
Parambath, Shameem A. Puthiya, Anagnostopoulos, Christos, Murray-Smith, Roderick, MacAvaney, Sean, Zervas, Evangelos
We consider the query recommendation problem in closed loop interactive learning settings like online information gathering and exploratory analytics. The problem can be naturally modelled using the Multi-Armed Bandits (MAB) framework with countably many arms. The standard MAB algorithms for countably many arms begin with selecting a random set of candidate arms and then applying standard MAB algorithms, e.g., UCB, on this candidate set downstream. We show that such a selection strategy often results in higher cumulative regret and to this end, we propose a selection strategy based on the maximum utility of the arms. We show that in tasks like online information gathering, where sequential query recommendations are employed, the sequences of queries are correlated and the number of potentially optimal queries can be reduced to a manageable size by selecting queries with maximum utility with respect to the currently executing query. Our experimental results using a recent real online literature discovery service log file demonstrate that the proposed arm selection strategy improves the cumulative regret substantially with respect to the state-of-the-art baseline algorithms.
SAGA: A Submodular Greedy Algorithm for Group Recommendation
Parambath, Shameem A. Puthiya (Qatar Computing Research Institute) | Vijayakumar, Nishant (Apptopia Inc.) | Chawla, Sanjay (Qatar Computing Research Institute)
In this paper, we propose a unified framework and an algorithm for the problem of group recommendation where a fixed number of items or alternatives can be recommended to a group of users. The problem of group recommendation arises naturally in many real world contexts, and is closely related to the budgeted social choice problem studied in economics. We frame the group recommendation problem as choosing a subgraph with the largest group consensus score in a completely connected graph defined over the item affinity matrix. We propose a fast greedy algorithm with strong theoretical guarantees, and show that the proposed algorithm compares favorably to the state-of-the-art group recommendation algorithms according to commonly used relevance and coverage performance measures on benchmark dataset.