Plotting

 Papernot, Nicolas


Language Models May Verbatim Complete TextThey Were Not Explicitly Trained On

arXiv.org Artificial Intelligence

An important question today is whether a given text was used to train a large language model (LLM). A \emph{completion} test is often employed: check if the LLM completes a sufficiently complex text. This, however, requires a ground-truth definition of membership; most commonly, it is defined as a member based on the $n$-gram overlap between the target text and any text in the dataset. In this work, we demonstrate that this $n$-gram based membership definition can be effectively gamed. We study scenarios where sequences are \emph{non-members} for a given $n$ and we find that completion tests still succeed. We find many natural cases of this phenomenon by retraining LLMs from scratch after removing all training samples that were completed; these cases include exact duplicates, near-duplicates, and even short overlaps. They showcase that it is difficult to find a single viable choice of $n$ for membership definitions. Using these insights, we design adversarial datasets that can cause a given target sequence to be completed without containing it, for any reasonable choice of $n$. Our findings highlight the inadequacy of $n$-gram membership, suggesting membership definitions fail to account for auxiliary information available to the training algorithm.


Societal Alignment Frameworks Can Improve LLM Alignment

arXiv.org Artificial Intelligence

Recent progress in large language models (LLMs) has focused on producing responses that meet human expectations and align with shared values - a process coined alignment. However, aligning LLMs remains challenging due to the inherent disconnect between the complexity of human values and the narrow nature of the technological approaches designed to address them. Current alignment methods often lead to misspecified objectives, reflecting the broader issue of incomplete contracts, the impracticality of specifying a contract between a model developer, and the model that accounts for every scenario in LLM alignment. In this paper, we argue that improving LLM alignment requires incorporating insights from societal alignment frameworks, including social, economic, and contractual alignment, and discuss potential solutions drawn from these domains. Given the role of uncertainty within societal alignment frameworks, we then investigate how it manifests in LLM alignment. We end our discussion by offering an alternative view on LLM alignment, framing the underspecified nature of its objectives as an opportunity rather than perfect their specification. Beyond technical improvements in LLM alignment, we discuss the need for participatory alignment interface designs.


Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy, Research, and Practice

arXiv.org Artificial Intelligence

We articulate fundamental mismatches between technical methods for machine unlearning in Generative AI, and documented aspirations for broader impact that these methods could have for law and policy. These aspirations are both numerous and varied, motivated by issues that pertain to privacy, copyright, safety, and more. For example, unlearning is often invoked as a solution for removing the effects of targeted information from a generative-AI model's parameters, e.g., a particular individual's personal data or in-copyright expression of Spiderman that was included in the model's training data. Unlearning is also proposed as a way to prevent a model from generating targeted types of information in its outputs, e.g., generations that closely resemble a particular individual's data or reflect the concept of "Spiderman." Both of these goals--the targeted removal of information from a model and the targeted suppression of information from a model's outputs--present various technical and substantive challenges. We provide a framework for thinking rigorously about these challenges, which enables us to be clear about why unlearning is not a general-purpose solution for circumscribing generative-AI model behavior in service of broader positive impact. We aim for conceptual clarity and to encourage more thoughtful communication among machine learning (ML), law, and policy experts who seek to develop and apply technical methods for compliance with policy objectives.


On the Privacy Risk of In-context Learning

arXiv.org Artificial Intelligence

Large language models (LLMs) are excellent few-shot learners. They can perform a wide variety of tasks purely based on natural language prompts provided to them. These prompts contain data of a specific downstream task -- often the private dataset of a party, e.g., a company that wants to leverage the LLM for their purposes. We show that deploying prompted models presents a significant privacy risk for the data used within the prompt by instantiating a highly effective membership inference attack. We also observe that the privacy risk of prompted models exceeds fine-tuned models at the same utility levels. After identifying the model's sensitivity to their prompts -- in the form of a significantly higher prediction confidence on the prompted data -- as a cause for the increased risk, we propose ensembling as a mitigation strategy. By aggregating over multiple different versions of a prompted model, membership inference risk can be decreased.


Temporal-Difference Learning Using Distributed Error Signals

arXiv.org Artificial Intelligence

A computational problem in biological reward-based learning is how credit assignment is performed in the nucleus accumbens (NAc). Much research suggests that NAc dopamine encodes temporal-difference (TD) errors for learning value predictions. However, dopamine is synchronously distributed in regionally homogeneous concentrations, which does not support explicit credit assignment (like used by backpropagation). It is unclear whether distributed errors alone are sufficient for synapses to make coordinated updates to learn complex, nonlinear reward-based learning tasks. We design a new deep Q-learning algorithm, Artificial Dopamine, to computationally demonstrate that synchronously distributed, per-layer TD errors may be sufficient to learn surprisingly complex RL tasks. We empirically evaluate our algorithm on MinAtar, the DeepMind Control Suite, and classic control tasks, and show it often achieves comparable performance to deep RL algorithms that use backpropagation.


A False Sense of Safety: Unsafe Information Leakage in 'Safe' AI Responses

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are vulnerable to jailbreaks$\unicode{x2013}$methods to elicit harmful or generally impermissible outputs. Safety measures are developed and assessed on their effectiveness at defending against jailbreak attacks, indicating a belief that safety is equivalent to robustness. We assert that current defense mechanisms, such as output filters and alignment fine-tuning, are, and will remain, fundamentally insufficient for ensuring model safety. These defenses fail to address risks arising from dual-intent queries and the ability to composite innocuous outputs to achieve harmful goals. To address this critical gap, we introduce an information-theoretic threat model called inferential adversaries who exploit impermissible information leakage from model outputs to achieve malicious goals. We distinguish these from commonly studied security adversaries who only seek to force victim models to generate specific impermissible outputs. We demonstrate the feasibility of automating inferential adversaries through question decomposition and response aggregation. To provide safety guarantees, we define an information censorship criterion for censorship mechanisms, bounding the leakage of impermissible information. We propose a defense mechanism which ensures this bound and reveal an intrinsic safety-utility trade-off. Our work provides the first theoretically grounded understanding of the requirements for releasing safe LLMs and the utility costs involved.


UnUnlearning: Unlearning is not sufficient for content regulation in advanced generative AI

arXiv.org Artificial Intelligence

Exact unlearning was first introduced as a privacy mechanism that allowed a user to retract their data from machine learning models on request. Shortly after, inexact schemes were proposed to mitigate the impractical costs associated with exact unlearning. More recently unlearning is often discussed as an approach for removal of impermissible knowledge i.e. knowledge that the model should not possess such as unlicensed copyrighted, inaccurate, or malicious information. The promise is that if the model does not have a certain malicious capability, then it cannot be used for the associated malicious purpose. In this paper we revisit the paradigm in which unlearning is used for in Large Language Models (LLMs) and highlight an underlying inconsistency arising from in-context learning. Unlearning can be an effective control mechanism for the training phase, yet it does not prevent the model from performing an impermissible act during inference. We introduce a concept of ununlearning, where unlearned knowledge gets reintroduced in-context, effectively rendering the model capable of behaving as if it knows the forgotten knowledge. As a result, we argue that content filtering for impermissible knowledge will be required and even exact unlearning schemes are not enough for effective content regulation. We discuss feasibility of ununlearning for modern LLMs and examine broader implications.


The Fundamental Limits of Least-Privilege Learning

arXiv.org Artificial Intelligence

The promise of least-privilege learning -- to find feature representations that are useful for a learning task but prevent inference of any sensitive information unrelated to this task -- is highly appealing. However, so far this concept has only been stated informally. It thus remains an open question whether and how we can achieve this goal. In this work, we provide the first formalisation of the least-privilege principle for machine learning and characterise its feasibility. We prove that there is a fundamental trade-off between a representation's utility for a given task and its leakage beyond the intended task: it is not possible to learn representations that have high utility for the intended task but, at the same time prevent inference of any attribute other than the task label itself. This trade-off holds under realistic assumptions on the data distribution and regardless of the technique used to learn the feature mappings that produce these representations. We empirically validate this result for a wide range of learning techniques, model architectures, and datasets.


LLM Dataset Inference: Did you train on my dataset?

arXiv.org Artificial Intelligence

The proliferation of large language models (LLMs) in the real world has come with a rise in copyright cases against companies for training their models on unlicensed data from the internet. Recent works have presented methods to identify if individual text sequences were members of the model's training data, known as membership inference attacks (MIAs). We demonstrate that the apparent success of these MIAs is confounded by selecting non-members (text sequences not used for training) belonging to a different distribution from the members (e.g., temporally shifted recent Wikipedia articles compared with ones used to train the model). This distribution shift makes membership inference appear successful. However, most MIA methods perform no better than random guessing when discriminating between members and non-members from the same distribution (e.g., in this case, the same period of time). Even when MIAs work, we find that different MIAs succeed at inferring membership of samples from different distributions. Instead, we propose a new dataset inference method to accurately identify the datasets used to train large language models. This paradigm sits realistically in the modern-day copyright landscape, where authors claim that an LLM is trained over multiple documents (such as a book) written by them, rather than one particular paragraph. While dataset inference shares many of the challenges of membership inference, we solve it by selectively combining the MIAs that provide positive signal for a given distribution, and aggregating them to perform a statistical test on a given dataset. Our approach successfully distinguishes the train and test sets of different subsets of the Pile with statistically significant p-values < 0.1, without any false positives.


Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model

arXiv.org Artificial Intelligence

Machine learning models can be trained with formal privacy guarantees via differentially private optimizers such as DP-SGD. In this work, we study such privacy guarantees when the adversary only accesses the final model, i.e., intermediate model updates are not released. In the existing literature, this "hidden state" threat model exhibits a significant gap between the lower bound provided by empirical privacy auditing and the theoretical upper bound provided by privacy accounting. To challenge this gap, we propose to audit this threat model with adversaries that craft a gradient sequence to maximize the privacy loss of the final model without accessing intermediate models. We demonstrate experimentally how this approach consistently outperforms prior attempts at auditing the hidden state model. When the crafted gradient is inserted at every optimization step, our results imply that releasing only the final model does not amplify privacy, providing a novel negative result. On the other hand, when the crafted gradient is not inserted at every step, we show strong evidence that a privacy amplification phenomenon emerges in the general non-convex setting (albeit weaker than in convex regimes), suggesting that existing privacy upper bounds can be improved.