Paparusso, Luca
ZAPP! Zonotope Agreement of Prediction and Planning for Continuous-Time Collision Avoidance with Discrete-Time Dynamics
Paparusso, Luca, Kousik, Shreyas, Schmerling, Edward, Braghin, Francesco, Pavone, Marco
The past few years have seen immense progress on two fronts that are critical to safe, widespread mobile robot deployment: predicting uncertain motion of multiple agents, and planning robot motion under uncertainty. However, the numerical methods required on each front have resulted in a mismatch of representation for prediction and planning. In prediction, numerical tractability is usually achieved by coarsely discretizing time, and by representing multimodal multi-agent interactions as distributions with infinite support. On the other hand, safe planning typically requires very fine time discretization, paired with distributions with compact support, to reduce conservativeness and ensure numerical tractability. The result is, when existing predictors are coupled with planning and control, one may often find unsafe motion plans. This paper proposes ZAPP (Zonotope Agreement of Prediction and Planning) to resolve the representation mismatch. ZAPP unites a prediction-friendly coarse time discretization and a planning-friendly zonotope uncertainty representation; the method also enables differentiating through a zonotope collision check, allowing one to integrate prediction and planning within a gradient-based optimization framework. Numerical examples show how ZAPP can produce safer trajectories compared to baselines in interactive scenes.
Real-Time Forecasting of Driver-Vehicle Dynamics on 3D Roads: a Deep-Learning Framework Leveraging Bayesian Optimisation
Paparusso, Luca, Melzi, Stefano, Braghin, Francesco
Most state-of-the-art works in trajectory forecasting for automotive target predicting the pose and orientation of the agents in the scene. This represents a particularly useful problem, for instance in autonomous driving, but it does not cover a spectrum of applications in control and simulation that require information on vehicle dynamics features other than pose and orientation. Also, multi-step dynamic simulation of complex multibody models does not seem to be a viable solution for real-time long-term prediction, due to the high computational time required. To bridge this gap, we present a deep-learning framework to model and predict the evolution of the coupled driver-vehicle system dynamics jointly on a complex road geometry. It consists of two components. The first, a neural network predictor, is based on Long Short-Term Memory autoencoders and fuses the information on the road geometry and the past driver-vehicle system dynamics to produce context-aware predictions. The second, a Bayesian optimiser, is proposed to tune some significant hyperparameters of the network. These govern the network complexity, as well as the features importance. The result is a self-tunable framework with real-time applicability, which allows the user to specify the features of interest. The approach has been validated with a case study centered on motion cueing algorithms, using a dataset collected during test sessions of a non-professional driver on a dynamic driving simulator. A 3D track with complex geometry has been employed as driving environment to render the prediction task challenging. Finally, the robustness of the neural network to changes in the driver and track was investigated to set guidelines for future works.