Goto

Collaborating Authors

 Paparrizou, Anastasia


Strong Bounds Consistencies and Their Application to Linear Constraints

AAAI Conferences

We propose two local consistencies that extend bounds consistency (BC) by simultaneously considering combinations of constraints as opposed to single constraints. We prove that these two local consistencies are both stronger than BC, but are NP-hard to enforce even when constraints are linear. Hence, we propose two polynomial-time techniques to enforce approximations of these two consistencies on linear constraints. One is a reformulation of the constraints on which we enforce BC whereas the other is a polynomial time algorithm. Both achieve stronger pruning than BC. Our experiments show large differences in favor of our approaches.


Efficient Algorithms for Strong Local Consistencies in Constraint Satisfaction Problems

AAAI Conferences

The existing complete methods for solving Constraint Satisfaction Problems (CSPs) are usually based on a combination of exhaustive search and constraint propagation techniques for the reduction of the search space. Such propagation techniques are the local consistency algorithms. Arc Consistency (AC) and Generalized Arc Consistency (GAC) are the most widely studied local consistencies that are predominantly used in constraint solvers. However, many stronger local consistencies than (G)AC have been proposed, even recently, but have been rather overlooked due to their prohibitive cost. This research proposes efficient algorithms for strong consistencies for both binary and non-binary constraints that can be easily adopted by standard CP solvers. Experimental results have so far demonstrated that the proposed algorithms are quite competitive and often more efficient than state-of-the-art methods, being orders of magnitude faster on various problem classes.


Extending STR to a Higher-Order Consistency

AAAI Conferences

One of the most widely studied classes of constraints in constraint programming (CP) is that of table constraints. Numerousspecialized filtering algorithms, enforcing the wellknown property called generalized arc consistency (GAC),have been developed for such constraints. Among the most successful GAC algorithms for table constraints, we find variants of simple tabular reduction (STR), like STR2. In this paper,we propose an extension of STR-based algorithms that achieves full pairwise consistency (FPWC), a consistency stronger than GAC and max restricted pairwise consistency (maxRPWC). Our approach involves counting the number of occurrences of specific combinations of values in constraint intersections. Importantly, the worst-case time complexity of one call to the basic filtering procedure at the heart of our new algorithm is quite close to that of STR algorithms. Experiments demonstrate that our method can outperform STR2 in many classes of problems, being significantly faster in some cases. Also, it is clearly superior to maxRPWC+, an algorithm that has been recently proposed.


An Efficient Higher-Order Consistency Algorithm for Table Constraints

AAAI Conferences

Table constraints are very important in constraint programming as they are present in many real problems from areas such as configuration and databases. As a result, numerous specialized algorithms that achieve generalized arc consistency (GAC) on table constraints have been proposed. Since these algorithms achieve GAC, they operate on one constraint at a time. In this paper we propose an efficient algorithm for table constraints that achieves a stronger local consistency than GAC. This algorithm, called maxRPWC+, is based on the local consistency maxRPWC and allows the efficient handling of intersecting table constraints. Experimental results from benchmark problems demonstrate that maxRPWC+ is clearly more robust than a state-of-the-art GAC algorithm in classes of problems with interleaved table constraints, being orders of magnitude faster in some of these classes.


Improving the Performance of maxRPC

arXiv.org Artificial Intelligence

Max Restricted Path Consistency (maxRPC) is a local consistency for binary constraints that can achieve considerably stronger pruning than arc consistency. However, existing maxRRC algorithms suffer from overheads and redundancies as they can repeatedly perform many constraint checks without triggering any value deletions. In this paper we propose techniques that can boost the performance of maxRPC algorithms. These include the combined use of two data structures to avoid many redundant constraint checks, and heuristics for the efficient ordering and execution of certain operations. Based on these, we propose two closely related algorithms. The first one which is a maxRPC algorithm with optimal O(end^3) time complexity, displays good performance when used stand-alone, but is expensive to apply during search. The second one approximates maxRPC and has O(en^2d^4) time complexity, but a restricted version with O(end^4) complexity can be very efficient when used during search. Both algorithms have O(ed) space complexity. Experimental results demonstrate that the resulting methods constantly outperform previous algorithms for maxRPC, often by large margins, and constitute a more than viable alternative to arc consistency on many problems.