Goto

Collaborating Authors

 Papandreou, George


Searching for Efficient Multi-Scale Architectures for Dense Image Prediction

Neural Information Processing Systems

The design of neural network architectures is an important component for achieving state-of-the-art performance with machine learning systems across a broad array of tasks. Much work has endeavored to design and build architectures automatically through clever construction of a search space paired with simple learning algorithms. Recent progress has demonstrated that such meta-learning methods may exceed scalable human-invented architectures on image classification tasks. An open question is the degree to which such methods may generalize to new domains. In this work we explore the construction of meta-learning techniques for dense image prediction focused on the tasks of scene parsing, person-part segmentation, and semantic image segmentation. Constructing viable search spaces in this domain is challenging because of the multi-scale representation of visual information and the necessity to operate on high resolution imagery. Based on a survey of techniques in dense image prediction, we construct a recursive search space and demonstrate that even with efficient random search, we can identify architectures that outperform human-invented architectures and achieve state-of-the-art performance on three dense prediction tasks including 82.7% on Cityscapes (street scene parsing), 71.3% on PASCAL-Person-Part (person-part segmentation), and 87.9% on PASCAL VOC 2012 (semantic image segmentation). Additionally, the resulting architecture is more computationally efficient, requiring half the parameters and half the computational cost as previous state of the art systems.


Searching for Efficient Multi-Scale Architectures for Dense Image Prediction

Neural Information Processing Systems

The design of neural network architectures is an important component for achieving state-of-the-art performance with machine learning systems across a broad array of tasks. Much work has endeavored to design and build architectures automatically through clever construction of a search space paired with simple learning algorithms. Recent progress has demonstrated that such meta-learning methods may exceed scalable human-invented architectures on image classification tasks. An open question is the degree to which such methods may generalize to new domains. In this work we explore the construction of meta-learning techniques for dense image prediction focused on the tasks of scene parsing, person-part segmentation, and semantic image segmentation. Constructing viable search spaces in this domain is challenging because of the multi-scale representation of visual information and the necessity to operate on high resolution imagery. Based on a survey of techniques in dense image prediction, we construct a recursive search space and demonstrate that even with efficient random search, we can identify architectures that outperform human-invented architectures and achieve state-of-the-art performance on three dense prediction tasks including 82.7% on Cityscapes (street scene parsing), 71.3% on PASCAL-Person-Part (person-part segmentation), and 87.9% on PASCAL VOC 2012 (semantic image segmentation). Additionally, the resulting architecture is more computationally efficient, requiring half the parameters and half the computational cost as previous state of the art systems.


Searching for Efficient Multi-Scale Architectures for Dense Image Prediction

arXiv.org Machine Learning

The design of neural network architectures is an important component for achieving state-of-the-art performance with machine learning systems across a broad array of tasks. Much work has endeavored to design and build architectures automatically through clever construction of a search space paired with simple learning algorithms. Recent progress has demonstrated that such meta-learning methods may exceed scalable human-invented architectures on image classification tasks. An open question is the degree to which such methods may generalize to new domains. In this work we explore the construction of meta-learning techniques for dense image prediction focused on the tasks of scene parsing, person-part segmentation, and semantic image segmentation. Constructing viable search spaces in this domain is challenging because of the multi-scale representation of visual information and the necessity to operate on high resolution imagery. Based on a survey of techniques in dense image prediction, we construct a recursive search space and demonstrate that even with efficient random search, we can identify architectures that outperform human-invented architectures and achieve state-of-the-art performance on three dense prediction tasks including 82.7\% on Cityscapes (street scene parsing), 71.3\% on PASCAL-Person-Part (person-part segmentation), and 87.9\% on PASCAL VOC 2012 (semantic image segmentation). Additionally, the resulting architecture is more computationally efficient, requiring half the parameters and half the computational cost as previous state of the art systems.


Efficient variational inference in large-scale Bayesian compressed sensing

arXiv.org Machine Learning

We study linear models under heavy-tailed priors from a probabilistic viewpoint. Instead of computing a single sparse most probable (MAP) solution as in standard deterministic approaches, the focus in the Bayesian compressed sensing framework shifts towards capturing the full posterior distribution on the latent variables, which allows quantifying the estimation uncertainty and learning model parameters using maximum likelihood. The exact posterior distribution under the sparse linear model is intractable and we concentrate on variational Bayesian techniques to approximate it. Repeatedly computing Gaussian variances turns out to be a key requisite and constitutes the main computational bottleneck in applying variational techniques in large-scale problems. We leverage on the recently proposed Perturb-and-MAP algorithm for drawing exact samples from Gaussian Markov random fields (GMRF). The main technical contribution of our paper is to show that estimating Gaussian variances using a relatively small number of such efficiently drawn random samples is much more effective than alternative general-purpose variance estimation techniques. By reducing the problem of variance estimation to standard optimization primitives, the resulting variational algorithms are fully scalable and parallelizable, allowing Bayesian computations in extremely large-scale problems with the same memory and time complexity requirements as conventional point estimation techniques. We illustrate these ideas with experiments in image deblurring.


Gaussian sampling by local perturbations

Neural Information Processing Systems

We present a technique for exact simulation of Gaussian Markov random fields (GMRFs), which can be interpreted as locally injecting noise to each Gaussian factor independently, followed by computing the mean/mode of the perturbed GMRF. Coupled with standard iterative techniques for the solution of symmetric positive definite systems, this yields a very efficient sampling algorithm with essentially linear complexity in terms of speed and memory requirements, well suited to extremely large scale probabilistic models. Apart from synthesizing data under a Gaussian model, the proposed technique directly leads to an efficient unbiased estimator of marginal variances. Beyond Gaussian models, the proposed algorithm is also very useful for handling highly non-Gaussian continuously-valued MRFs such as those arising in statistical image modeling or in the first layer of deep belief networks describing real-valued data, where the non-quadratic potentials coupling different sites can be represented as finite or infinite mixtures of Gaussians with the help of local or distributed latent mixture assignment variables. The Bayesian treatment of such models most naturally involves a block Gibbs sampler which alternately draws samples of the conditionally independent latent mixture assignments and the conditionally multivariate Gaussian continuous vector and we show that it can directly benefit from the proposed methods.