Goto

Collaborating Authors

 Papa, Guillaume


On Graph Reconstruction via Empirical Risk Minimization: Fast Learning Rates and Scalability

Neural Information Processing Systems

The problem of predicting connections between a set of data points finds many applications, in systems biology and social network analysis among others. This paper focuses on the \textit{graph reconstruction} problem, where the prediction rule is obtained by minimizing the average error over all n(n-1)/2 possible pairs of the n nodes of a training graph. Our first contribution is to derive learning rates of order O(log n / n) for this problem, significantly improving upon the slow rates of order O(1/ n) established in the seminal work of Biau & Bleakley (2006). Strikingly, these fast rates are universal, in contrast to similar results known for other statistical learning problems (e.g., classification, density level set estimation, ranking, clustering) which require strong assumptions on the distribution of the data. Specifically, we investigate to which extent the learning rates can be preserved when replacing the empirical reconstruction risk by a computationally cheaper Monte-Carlo version, obtained by sampling with replacement B n² pairs of nodes.


Trade-offs in Large-Scale Distributed Tuplewise Estimation and Learning

arXiv.org Machine Learning

The development of cluster computing frameworks has allowed practitioners to scale out various statistical estimation and machine learning algorithms with minimal programming effort. This is especially true for machine learning problems whose objective function is nicely separable across individual data points, such as classification and regression. In contrast, statistical learning tasks involving pairs (or more generally tuples) of data points - such as metric learning, clustering or ranking do not lend themselves as easily to data-parallelism and in-memory computing. In this paper, we investigate how to balance between statistical performance and computational efficiency in such distributed tuplewise statistical problems. We first propose a simple strategy based on occasionally repartitioning data across workers between parallel computation stages, where the number of repartitioning steps rules the trade-off between accuracy and runtime. We then present some theoretical results highlighting the benefits brought by the proposed method in terms of variance reduction, and extend our results to design distributed stochastic gradient descent algorithms for tuplewise empirical risk minimization. Our results are supported by numerical experiments in pairwise statistical estimation and learning on synthetic and real-world datasets.


On Graph Reconstruction via Empirical Risk Minimization: Fast Learning Rates and Scalability

Neural Information Processing Systems

The problem of predicting connections between a set of data points finds many applications, in systems biology and social network analysis among others. This paper focuses on the \textit{graph reconstruction} problem, where the prediction rule is obtained by minimizing the average error over all n(n-1)/2 possible pairs of the n nodes of a training graph. Our first contribution is to derive learning rates of order O(log n / n) for this problem, significantly improving upon the slow rates of order O(1/√n) established in the seminal work of Biau & Bleakley (2006). Strikingly, these fast rates are universal, in contrast to similar results known for other statistical learning problems (e.g., classification, density level set estimation, ranking, clustering) which require strong assumptions on the distribution of the data. Motivated by applications to large graphs, our second contribution deals with the computational complexity of graph reconstruction. Specifically, we investigate to which extent the learning rates can be preserved when replacing the empirical reconstruction risk by a computationally cheaper Monte-Carlo version, obtained by sampling with replacement B << n² pairs of nodes. Finally, we illustrate our theoretical results by numerical experiments on synthetic and real graphs.


SGD Algorithms based on Incomplete U-statistics: Large-Scale Minimization of Empirical Risk

Neural Information Processing Systems

In many learning problems, ranging from clustering to ranking through metric learning, empirical estimates of the risk functional consist of an average over tuples (e.g., pairs or triplets) of observations, rather than over individual observations. In this paper, we focus on how to best implement a stochastic approximation approach to solve such risk minimization problems. We argue that in the large-scale setting, gradient estimates should be obtained by sampling tuples of data points with replacement (incomplete U-statistics) instead of sampling data points without replacement (complete U-statistics based on subsamples). We develop a theoretical framework accounting for the substantial impact of this strategy on the generalization ability of the prediction model returned by the Stochastic Gradient Descent (SGD) algorithm. It reveals that the method we promote achieves a much better trade-off between statistical accuracy and computational cost. Beyond the rate bound analysis, experiments on AUC maximization and metric learning provide strong empirical evidence of the superiority of the proposed approach.


Survey schemes for stochastic gradient descent with applications to M-estimation

arXiv.org Machine Learning

In certain situations that shall be undoubtedly more and more common in the Big Data era, the datasets available are so massive that computing statistics over the full sample is hardly feasible, if not unfeasible. A natural approach in this context consists in using survey schemes and substituting the "full data" statistics with their counterparts based on the resulting random samples, of manageable size. It is the main purpose of this paper to investigate the impact of survey sampling with unequal inclusion probabilities on stochastic gradient descent-based M-estimation methods in large-scale statistical and machine-learning problems. Precisely, we prove that, in presence of some a priori information, one may significantly increase asymptotic accuracy when choosing appropriate first order inclusion probabilities, without affecting complexity. These striking results are described here by limit theorems and are also illustrated by numerical experiments.