Goto

Collaborating Authors

 Paolieri, Marco


Predicting Ground Reaction Force from Inertial Sensors

arXiv.org Artificial Intelligence

The study of ground reaction forces (GRF) is used to characterize the mechanical loading experienced by individuals in movements such as running, which is clinically applicable to identify athletes at risk for stress-related injuries. Our aim in this paper is to determine if data collected with inertial measurement units (IMUs), that can be worn by athletes during outdoor runs, can be used to predict GRF with sufficient accuracy to allow the analysis of its derived biomechanical variables (e.g., contact time and loading rate). In this paper, we consider lightweight approaches in contrast to state-of-the-art prediction using LSTM neural networks. Specifically, we compare use of LSTMs to k-Nearest Neighbors (KNN) regression as well as propose a novel solution, SVD Embedding Regression (SER), using linear regression between singular value decomposition embeddings of IMUs data (input) and GRF data (output). We evaluate the accuracy of these techniques when using training data collected from different athletes, from the same athlete, or both, and we explore the use of acceleration and angular velocity data from sensors at different locations (sacrum and shanks). Our results illustrate that simple machine learning methods such as SER and KNN can be similarly accurate or more accurate than LSTM neural networks, with much faster training times and hyperparameter optimization; in particular, SER and KNN are more accurate when personal training data are available, and KNN comes with benefit of providing provenance of prediction. Notably, the use of personal data reduces prediction errors of all methods for most biomechanical variables.


Backdoor Attacks on Federated Meta-Learning

arXiv.org Machine Learning

Federated learning allows multiple users to collaboratively train a shared classification model while preserving data privacy. This approach, where model updates are aggregated by a central server, was shown to be vulnerable to backdoor attacks: a malicious user can alter the shared model to arbitrarily classify specific inputs from a given class. In this paper, we analyze the effects of backdoor attacks in federated meta-learning, where users train a model that can be adapted to different sets of output classes using only a few training examples. While the ability to adapt could, in principle, make federated learning more robust to backdoor attacks when new training examples are benign, we find that even 1-shot poisoning attacks can be very successful and persist after additional training. To address these vulnerabilities, we propose a defense mechanism inspired by matching networks, where the class of an input is predicted from the cosine similarity of its features with a support set of labeled examples. By removing the decision logic from the model shared with the federation, success and persistence of backdoor attacks are greatly reduced.