Panickssery, Nina
Inspection and Control of Self-Generated-Text Recognition Ability in Llama3-8b-Instruct
Ackerman, Christopher, Panickssery, Nina
It has been reported that LLMs can recognize their own writing. As this has potential implications for AI safety, yet is relatively understudied, we investigate the phenomenon, seeking to establish whether it robustly occurs at the behavioral level, how the observed behavior is achieved, and whether it can be controlled. First, we find that the Llama3-8b-Instruct chat model - but not the base Llama3-8b model - can reliably distinguish its own outputs from those of humans, and present evidence that the chat model is likely using its experience with its own outputs, acquired during post-training, to succeed at the writing recognition task. Second, we identify a vector in the residual stream of the model that is differentially activated when the model makes a correct self-written-text recognition judgment, show that the vector activates in response to information relevant to self-authorship, present evidence that the vector is related to the concept of "self" in the model, and demonstrate that the vector is causally related to the model's ability to perceive and assert self-authorship. Finally, we show that the vector can be used to control both the model's behavior and its perception, steering the model to claim or disclaim authorship by applying the vector to the model's output as it generates it, and steering the model to believe or disbelieve it wrote arbitrary texts by applying the vector to them as the model reads them.
Refusal in Language Models Is Mediated by a Single Direction
Arditi, Andy, Obeso, Oscar, Syed, Aaquib, Paleka, Daniel, Panickssery, Nina, Gurnee, Wes, Nanda, Neel
Conversational large language models are fine-tuned for both instruction-following and safety, resulting in models that obey benign requests but refuse harmful ones. While this refusal behavior is widespread across chat models, its underlying mechanisms remain poorly understood. In this work, we show that refusal is mediated by a one-dimensional subspace, across 13 popular open-source chat models up to 72B parameters in size. Specifically, for each model, we find a single direction such that erasing this direction from the model's residual stream activations prevents it from refusing harmful instructions, while adding this direction elicits refusal on even harmless instructions. Leveraging this insight, we propose a novel white-box jailbreak method that surgically disables refusal with minimal effect on other capabilities. Finally, we mechanistically analyze how adversarial suffixes suppress propagation of the refusal-mediating direction. Our findings underscore the brittleness of current safety fine-tuning methods. More broadly, our work showcases how an understanding of model internals can be leveraged to develop practical methods for controlling model behavior.