Goto

Collaborating Authors

 Pang Wei W. Koh




Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations.

Neural Information Processing Systems

Learning representations that accurately capture long-range dependencies in sequential inputs -- including text, audio, and genomic data -- is a key problem in deep learning. Feed-forward convolutional models capture only feature interactions within finite receptive fields while recurrent architectures can be slow and difficult to train due to vanishing gradients. Here, we propose Temporal Feature-Wise Linear Modulation (TFiLM) -- a novel architectural component inspired by adaptive batch normalization and its extensions -- that uses a recurrent neural network to alter the activations of a convolutional model. This approach expands the receptive field of convolutional sequence models with minimal computational overhead. Empirically, we find that TFiLM significantly improves the learning speed and accuracy of feed-forward neural networks on a range of generative and discriminative learning tasks, including text classification and audio super-resolution.


Certified Defenses for Data Poisoning Attacks

Neural Information Processing Systems

Machine learning systems trained on user-provided data are susceptible to data poisoning attacks, whereby malicious users inject false training data with the aim of corrupting the learned model. While recent work has proposed a number of attacks and defenses, little is understood about the worst-case loss of a defense in the face of a determined attacker. We address this by constructing approximate upper bounds on the loss across a broad family of attacks, for defenders that first perform outlier removal followed by empirical risk minimization. Our approximation relies on two assumptions: (1) that the dataset is large enough for statistical concentration between train and test error to hold, and (2) that outliers within the clean (nonpoisoned) data do not have a strong effect on the model. Our bound comes paired with a candidate attack that often nearly matches the upper bound, giving us a powerful tool for quickly assessing defenses on a given dataset. Empirically, we find that even under a simple defense, the MNIST-1-7 and Dogfish datasets are resilient to attack, while in contrast the IMDB sentiment dataset can be driven from 12% to 23% test error by adding only 3% poisoned data.