Pang, Yu
Adaptive Digital Twin and Communication-Efficient Federated Learning Network Slicing for 5G-enabled Internet of Things
Ayepah-Mensah, Daniel, Sun, Guolin, Pang, Yu, Jiang, Wei
Network slicing enables industrial Internet of Things (IIoT) networks with multiservice and differentiated resource requirements to meet increasing demands through efficient use and management of network resources. Typically, the network slice orchestrator relies on demand forecasts for each slice to make informed decisions and maximize resource utilization. The new generation of Industry 4.0 has introduced digital twins to map physical systems to digital models for accurate decision-making. In our approach, we first use graph-attention networks to build a digital twin environment for network slices, enabling real-time traffic analysis, monitoring, and demand forecasting. Based on these predictions, we formulate the resource allocation problem as a federated multi-agent reinforcement learning problem and employ a deep deterministic policy gradient to determine the resource allocation policy while preserving the privacy of the slices. Our results demonstrate that the proposed approaches can improve the accuracy of demand prediction for network slices and reduce the communication overhead of dynamic network slicing.
ADCNet: a unified framework for predicting the activity of antibody-drug conjugates
Chen, Liye, Li, Biaoshun, Chen, Yihao, Lin, Mujie, Zhang, Shipeng, Li, Chenxin, Pang, Yu, Wang, Ling
Antibody-drug conjugate (ADC) has revolutionized the field of cancer treatment in the era of precision medicine due to their ability to precisely target cancer cells and release highly effective drug. Nevertheless, the realization of rational design of ADC is very difficult because the relationship between their structures and activities is difficult to understand. In the present study, we introduce a unified deep learning framework called ADCNet to help design potential ADCs. The ADCNet highly integrates the protein representation learning language model ESM-2 and small-molecule representation learning language model FG-BERT models to achieve activity prediction through learning meaningful features from antigen and antibody protein sequences of ADC, SMILES strings of linker and payload, and drug-antibody ratio (DAR) value. Based on a carefully designed and manually tailored ADC data set, extensive evaluation results reveal that ADCNet performs best on the test set compared to baseline machine learning models across all evaluation metrics. For example, it achieves an average prediction accuracy of 87.12%, a balanced accuracy of 0.8689, and an area under receiver operating characteristic curve of 0.9293 on the test set. In addition, cross-validation, ablation experiments, and external independent testing results further prove the stability, advancement, and robustness of the ADCNet architecture. For the convenience of the community, we develop the first online platform (https://ADCNet.idruglab.cn) for the prediction of ADCs activity based on the optimal ADCNet model, and the source code is publicly available at https://github.com/idrugLab/ADCNet.