Goto

Collaborating Authors

 Pang, Ren


On the Difficulty of Defending Contrastive Learning against Backdoor Attacks

arXiv.org Artificial Intelligence

Recent studies have shown that contrastive learning, like supervised learning, is highly vulnerable to backdoor attacks wherein malicious functions are injected into target models, only to be activated by specific triggers. However, thus far it remains under-explored how contrastive backdoor attacks fundamentally differ from their supervised counterparts, which impedes the development of effective defenses against the emerging threat. This work represents a solid step toward answering this critical question. Specifically, we define TRL, a unified framework that encompasses both supervised and contrastive backdoor attacks. Through the lens of TRL, we uncover that the two types of attacks operate through distinctive mechanisms: in supervised attacks, the learning of benign and backdoor tasks tends to occur independently, while in contrastive attacks, the two tasks are deeply intertwined both in their representations and throughout their learning processes. This distinction leads to the disparate learning dynamics and feature distributions of supervised and contrastive attacks. More importantly, we reveal that the specificities of contrastive backdoor attacks entail important implications from a defense perspective: existing defenses for supervised attacks are often inadequate and not easily retrofitted to contrastive attacks. We also explore several alternative defenses and discuss their potential challenges. Our findings highlight the need for defenses tailored to the specificities of contrastive backdoor attacks, pointing to promising directions for future research.


Model Extraction Attacks Revisited

arXiv.org Artificial Intelligence

Model extraction (ME) attacks represent one major threat to Machine-Learning-as-a-Service (MLaaS) platforms by ``stealing'' the functionality of confidential machine-learning models through querying black-box APIs. Over seven years have passed since ME attacks were first conceptualized in the seminal work. During this period, substantial advances have been made in both ME attacks and MLaaS platforms, raising the intriguing question: How has the vulnerability of MLaaS platforms to ME attacks been evolving? In this work, we conduct an in-depth study to answer this critical question. Specifically, we characterize the vulnerability of current, mainstream MLaaS platforms to ME attacks from multiple perspectives including attack strategies, learning techniques, surrogate-model design, and benchmark tasks. Many of our findings challenge previously reported results, suggesting emerging patterns of ME vulnerability. Further, by analyzing the vulnerability of the same MLaaS platforms using historical datasets from the past four years, we retrospectively characterize the evolution of ME vulnerability over time, leading to a set of interesting findings. Finally, we make suggestions about improving the current practice of MLaaS in terms of attack robustness. Our study sheds light on the current state of ME vulnerability in the wild and points to several promising directions for future research.


Defending Pre-trained Language Models as Few-shot Learners against Backdoor Attacks

arXiv.org Artificial Intelligence

Pre-trained language models (PLMs) have demonstrated remarkable performance as few-shot learners. However, their security risks under such settings are largely unexplored. In this work, we conduct a pilot study showing that PLMs as few-shot learners are highly vulnerable to backdoor attacks while existing defenses are inadequate due to the unique challenges of few-shot scenarios. To address such challenges, we advocate MDP, a novel lightweight, pluggable, and effective defense for PLMs as few-shot learners. Specifically, MDP leverages the gap between the masking-sensitivity of poisoned and clean samples: with reference to the limited few-shot data as distributional anchors, it compares the representations of given samples under varying masking and identifies poisoned samples as ones with significant variations. We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness. The empirical evaluation using benchmark datasets and representative attacks validates the efficacy of MDP.


An Embarrassingly Simple Backdoor Attack on Self-supervised Learning

arXiv.org Artificial Intelligence

As a new paradigm in machine learning, self-supervised learning (SSL) is capable of learning high-quality representations of complex data without relying on labels. In addition to eliminating the need for labeled data, research has found that SSL improves the adversarial robustness over supervised learning since lacking labels makes it more challenging for adversaries to manipulate model predictions. However, the extent to which this robustness superiority generalizes to other types of attacks remains an open question. We explore this question in the context of backdoor attacks. Specifically, we design and evaluate CTRL, an embarrassingly simple yet highly effective self-supervised backdoor attack. By only polluting a tiny fraction of training data (<= 1%) with indistinguishable poisoning samples, CTRL causes any trigger-embedded input to be misclassified to the adversary's designated class with a high probability (>= 99%) at inference time. Our findings suggest that SSL and supervised learning are comparably vulnerable to backdoor attacks. More importantly, through the lens of CTRL, we study the inherent vulnerability of SSL to backdoor attacks. With both empirical and analytical evidence, we reveal that the representation invariance property of SSL, which benefits adversarial robustness, may also be the very reason making \ssl highly susceptible to backdoor attacks. Our findings also imply that the existing defenses against supervised backdoor attacks are not easily retrofitted to the unique vulnerability of SSL.


On the Security Risks of Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

Knowledge graph reasoning (KGR) -- answering complex logical queries over large knowledge graphs -- represents an important artificial intelligence task, entailing a range of applications (e.g., cyber threat hunting). However, despite its surging popularity, the potential security risks of KGR are largely unexplored, which is concerning, given the increasing use of such capability in security-critical domains. This work represents a solid initial step towards bridging the striking gap. We systematize the security threats to KGR according to the adversary's objectives, knowledge, and attack vectors. Further, we present ROAR, a new class of attacks that instantiate a variety of such threats. Through empirical evaluation in representative use cases (e.g., medical decision support, cyber threat hunting, and commonsense reasoning), we demonstrate that ROAR is highly effective to mislead KGR to suggest pre-defined answers for target queries, yet with negligible impact on non-target ones. Finally, we explore potential countermeasures against ROAR, including filtering of potentially poisoning knowledge and training with adversarially augmented queries, which leads to several promising research directions.


Neural Architectural Backdoors

arXiv.org Artificial Intelligence

This paper asks the intriguing question: is it possible to exploit neural architecture search (NAS) as a new attack vector to launch previously improbable attacks? Specifically, we present EVAS, a new attack that leverages NAS to find neural architectures with inherent backdoors and exploits such vulnerability using input-aware triggers. Compared with existing attacks, EVAS demonstrates many interesting properties: (i) it does not require polluting training data or perturbing model parameters; (ii) it is agnostic to downstream fine-tuning or even re-training from scratch; (iii) it naturally evades defenses that rely on inspecting model parameters or training data. With extensive evaluation on benchmark datasets, we show that EVAS features high evasiveness, transferability, and robustness, thereby expanding the adversary's design spectrum. We further characterize the mechanisms underlying EVAS, which are possibly explainable by architecture-level ``shortcuts'' that recognize trigger patterns. This work raises concerns about the current practice of NAS and points to potential directions to develop effective countermeasures.


Graph Backdoor

arXiv.org Machine Learning

One intriguing property of deep neural networks (DNNs) is their inherent vulnerability to backdoor attacks -- a trojaned model responds to trigger-embedded inputs in a highly predictable manner while functioning normally otherwise. Surprisingly, despite the plethora of prior work on DNNs for continuous data (e.g., images), little is known about the vulnerability of graph neural networks (GNNs) for discrete-structured data (e.g., graphs), which is highly concerning given their increasing use in security-sensitive domains. To bridge this gap, we present GTA, the first backdoor attack on GNNs. Compared with prior work, GTA departs in significant ways: graph-oriented -- it defines triggers as specific subgraphs, including both topological structures and descriptive features, entailing a large design spectrum for the adversary; input-tailored -- it dynamically adapts triggers to individual graphs, thereby optimizing both attack effectiveness and evasiveness; downstream model-agnostic -- it can be readily launched without knowledge regarding downstream models or fine-tuning strategies; and attack-extensible -- it can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks, constituting severe threats for a range of security-critical applications (e.g., toxic chemical classification). Through extensive evaluation using benchmark datasets and state-of-the-art models, we demonstrate the effectiveness of GTA: for instance, on pre-trained, off-the-shelf GNNs, GTA attains over 99.2% attack success rate with merely less than 0.3% accuracy drop. We further provide analytical justification for its effectiveness and discuss potential countermeasures, pointing to several promising research directions.


AdvMind: Inferring Adversary Intent of Black-Box Attacks

arXiv.org Machine Learning

Deep neural networks (DNNs) are inherently susceptible to adversarial attacks even under black-box settings, in which the adversary only has query access to the target models. In practice, while it may be possible to effectively detect such attacks (e.g., observing massive similar but non-identical queries), it is often challenging to exactly infer the adversary intent (e.g., the target class of the adversarial example the adversary attempts to craft) especially during early stages of the attacks, which is crucial for performing effective deterrence and remediation of the threats in many scenarios. In this paper, we present AdvMind, a new class of estimation models that infer the adversary intent of black-box adversarial attacks in a robust and prompt manner. Specifically, to achieve robust detection, AdvMind accounts for the adversary adaptiveness such that her attempt to conceal the target will significantly increase the attack cost (e.g., in terms of the number of queries); to achieve prompt detection, AdvMind proactively synthesizes plausible query results to solicit subsequent queries from the adversary that maximally expose her intent. Through extensive empirical evaluation on benchmark datasets and state-of-the-art black-box attacks, we demonstrate that on average AdvMind detects the adversary intent with over 75% accuracy after observing less than 3 query batches and meanwhile increases the cost of adaptive attacks by over 60%. We further discuss the possible synergy between AdvMind and other defense methods against black-box adversarial attacks, pointing to several promising research directions.