Goto

Collaborating Authors

 Pang, Qi


Communication Bounds for the Distributed Experts Problem

arXiv.org Artificial Intelligence

In this work, we study the experts problem in the distributed setting where an expert's cost needs to be aggregated across multiple servers. Our study considers various communication models such as the message-passing model and the broadcast model, along with multiple aggregation functions, such as summing and taking the $\ell_p$ norm of an expert's cost across servers. We propose the first communication-efficient protocols that achieve near-optimal regret in these settings, even against a strong adversary who can choose the inputs adaptively. Additionally, we give a conditional lower bound showing that the communication of our protocols is nearly optimal. Finally, we implement our protocols and demonstrate empirical savings on the HPO-B benchmarks.


No Free Lunch in LLM Watermarking: Trade-offs in Watermarking Design Choices

arXiv.org Artificial Intelligence

Advances in generative models have made it possible for AI-generated text, code, and images to mirror human-generated content in many applications. Watermarking, a technique that aims to embed information in the output of a model to verify its source, is useful for mitigating the misuse of such AI-generated content. However, we show that common design choices in LLM watermarking schemes make the resulting systems surprisingly susceptible to attack -- leading to fundamental trade-offs in robustness, utility, and usability. To navigate these trade-offs, we rigorously study a set of simple yet effective attacks on common watermarking systems, and propose guidelines and defenses for LLM watermarking in practice.


Provably Valid and Diverse Mutations of Real-World Media Data for DNN Testing

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) often accept high-dimensional media data (e.g., photos, text, and audio) and understand their perceptual content (e.g., a cat). To test DNNs, diverse inputs are needed to trigger mis-predictions. Some preliminary works use byte-level mutations or domain-specific filters (e.g., foggy), whose enabled mutations may be limited and likely error-prone. SOTA works employ deep generative models to generate (infinite) inputs. Also, to keep the mutated inputs perceptually valid (e.g., a cat remains a "cat" after mutation), existing efforts rely on imprecise and less generalizable heuristics. This study revisits two key objectives in media input mutation - perception diversity (DIV) and validity (VAL) - in a rigorous manner based on manifold, a well-developed theory capturing perceptions of high-dimensional media data in a low-dimensional space. We show important results that DIV and VAL inextricably bound each other, and prove that SOTA generative model-based methods fundamentally fail to mutate real-world media data (either sacrificing DIV or VAL). In contrast, we discuss the feasibility of mutating real-world media data with provably high DIV and VAL based on manifold. We concretize the technical solution of mutating media data of various formats (images, audios, text) via a unified manner based on manifold. Specifically, when media data are projected into a low-dimensional manifold, the data can be mutated by walking on the manifold with certain directions and step sizes. When contrasted with the input data, the mutated data exhibit encouraging DIV in the perceptual traits (e.g., lying vs. standing dog) while retaining reasonably high VAL (i.e., a dog remains a dog). We implement our techniques in DEEPWALK for testing DNNs. DEEPWALK outperforms prior methods in testing comprehensiveness and can find more error-triggering inputs with higher quality.


ADI: Adversarial Dominating Inputs in Vertical Federated Learning Systems

arXiv.org Artificial Intelligence

Vertical federated learning (VFL) system has recently become prominent as a concept to process data distributed across many individual sources without the need to centralize it. Multiple participants collaboratively train models based on their local data in a privacy-aware manner. To date, VFL has become a de facto solution to securely learn a model among organizations, allowing knowledge to be shared without compromising privacy of any individuals. Despite the prosperous development of VFL systems, we find that certain inputs of a participant, named adversarial dominating inputs (ADIs), can dominate the joint inference towards the direction of the adversary's will and force other (victim) participants to make negligible contributions, losing rewards that are usually offered regarding the importance of their contributions in federated learning scenarios. We conduct a systematic study on ADIs by first proving their existence in typical VFL systems. We then propose gradient-based methods to synthesize ADIs of various formats and exploit common VFL systems. We further launch greybox fuzz testing, guided by the saliency score of ``victim'' participants, to perturb adversary-controlled inputs and systematically explore the VFL attack surface in a privacy-preserving manner. We conduct an in-depth study on the influence of critical parameters and settings in synthesizing ADIs. Our study reveals new VFL attack opportunities, promoting the identification of unknown threats before breaches and building more secure VFL systems.


MDPFuzz: Testing Models Solving Markov Decision Processes

arXiv.org Artificial Intelligence

The Markov decision process (MDP) provides a mathematical framework for modeling sequential decision-making problems, many of which are crucial to security and safety, such as autonomous driving and robot control. The rapid development of artificial intelligence research has created efficient methods for solving MDPs, such as deep neural networks (DNNs), reinforcement learning (RL), and imitation learning (IL). However, these popular models solving MDPs are neither thoroughly tested nor rigorously reliable. We present MDPFuzz, the first blackbox fuzz testing framework for models solving MDPs. MDPFuzz forms testing oracles by checking whether the target model enters abnormal and dangerous states. During fuzzing, MDPFuzz decides which mutated state to retain by measuring if it can reduce cumulative rewards or form a new state sequence. We design efficient techniques to quantify the "freshness" of a state sequence using Gaussian mixture models (GMMs) and dynamic expectation-maximization (DynEM). We also prioritize states with high potential of revealing crashes by estimating the local sensitivity of target models over states. MDPFuzz is evaluated on five state-of-the-art models for solving MDPs, including supervised DNN, RL, IL, and multi-agent RL. Our evaluation includes scenarios of autonomous driving, aircraft collision avoidance, and two games that are often used to benchmark RL. During a 12-hour run, we find over 80 crash-triggering state sequences on each model. We show inspiring findings that crash-triggering states, though they look normal, induce distinct neuron activation patterns compared with normal states. We further develop an abnormal behavior detector to harden all the evaluated models and repair them with the findings of MDPFuzz to significantly enhance their robustness without sacrificing accuracy.


Byzantine-Robust Federated Learning with Optimal Statistical Rates and Privacy Guarantees

arXiv.org Artificial Intelligence

We propose Byzantine-robust federated learning protocols with nearly optimal statistical rates. In contrast to prior work, our proposed protocols improve the dimension dependence and achieve a tight statistical rate in terms of all the parameters for strongly convex losses. We benchmark against competing protocols and show the empirical superiority of the proposed protocols. Finally, we remark that our protocols with bucketing can be naturally combined with privacy-guaranteeing procedures to introduce security against a semi-honest server. The code for evaluation is provided in https://github.com/wanglun1996/secure-robust-federated-learning.


Revisiting Neuron Coverage for DNN Testing: A Layer-Wise and Distribution-Aware Criterion

arXiv.org Artificial Intelligence

Various deep neural network (DNN) coverage criteria have been proposed to assess DNN test inputs and steer input mutations. The coverage is characterized via neurons having certain outputs, or the discrepancy between neuron outputs. Nevertheless, recent research indicates that neuron coverage criteria show little correlation with test suite quality. In general, DNNs approximate distributions, by incorporating hierarchical layers, to make predictions for inputs. Thus, we champion to deduce DNN behaviors based on its approximated distributions from a layer perspective. A test suite should be assessed using its induced layer output distributions. Accordingly, to fully examine DNN behaviors, input mutation should be directed toward diversifying the approximated distributions. This paper summarizes eight design requirements for DNN coverage criteria, taking into account distribution properties and practical concerns. We then propose a new criterion, NeuraL Coverage (NLC), that satisfies all design requirements. NLC treats a single DNN layer as the basic computational unit (rather than a single neuron) and captures four critical properties of neuron output distributions. Thus, NLC accurately describes how DNNs comprehend inputs via approximated distributions. We demonstrate that NLC is significantly correlated with the diversity of a test suite across a number of tasks (classification and generation) and data formats (image and text). Its capacity to discover DNN prediction errors is promising. Test input mutation guided by NLC results in a greater quality and diversity of exposed erroneous behaviors.


F2ED-Learning: Good Fences Make Good Neighbors

arXiv.org Artificial Intelligence

In this paper, we present F2ED-Learning, the first federated learning protocol simultaneously defending against both a semi-honest server and Byzantine malicious clients. Using a robust mean estimator called FilterL2, F2ED-Learning is the first FL protocol providing dimension-free estimation error against Byzantine malicious clients. Besides, F2ED-Learning leverages secure aggregation to protect the clients from a semi-honest server who wants to infer the clients' information from the legitimate updates. The main challenge stems from the incompatibility between FilterL2 and secure aggregation. Specifically, to run FilterL2, the server needs to access individual updates from clients while secure aggregation hides those updates from it. We propose to split the clients into shards, securely aggregate each shard's updates and run FilterL2 on the updates from different shards. The evaluation shows that F2ED-Learning consistently achieves optimal or sub-optimal performance under three attacks among five robust FL protocols.