Goto

Collaborating Authors

 Pang, Linsey


A Survey on Trustworthy LLM Agents: Threats and Countermeasures

arXiv.org Artificial Intelligence

With the rapid evolution of Large Language Models (LLMs), LLM-based agents and Multi-agent Systems (MAS) have significantly expanded the capabilities of LLM ecosystems. This evolution stems from empowering LLMs with additional modules such as memory, tools, environment, and even other agents. However, this advancement has also introduced more complex issues of trustworthiness, which previous research focused solely on LLMs could not cover. In this survey, we propose the TrustAgent framework, a comprehensive study on the trustworthiness of agents, characterized by modular taxonomy, multi-dimensional connotations, and technical implementation. By thoroughly investigating and summarizing newly emerged attacks, defenses, and evaluation methods for agents and MAS, we extend the concept of Trustworthy LLM to the emerging paradigm of Trustworthy Agent. In TrustAgent, we begin by deconstructing and introducing various components of the Agent and MAS. Then, we categorize their trustworthiness into intrinsic (brain, memory, and tool) and extrinsic (user, agent, and environment) aspects. Subsequently, we delineate the multifaceted meanings of trustworthiness and elaborate on the implementation techniques of existing research related to these internal and external modules. Finally, we present our insights and outlook on this domain, aiming to provide guidance for future endeavors.


CoMAL: Collaborative Multi-Agent Large Language Models for Mixed-Autonomy Traffic

arXiv.org Artificial Intelligence

The integration of autonomous vehicles into urban traffic has great potential to improve efficiency by reducing congestion and optimizing traffic flow systematically. In this paper, we introduce CoMAL (Collaborative Multi-Agent LLMs), a framework designed to address the mixed-autonomy traffic problem by collaboration among autonomous vehicles to optimize traffic flow. CoMAL is built upon large language models, operating in an interactive traffic simulation environment. It utilizes a Perception Module to observe surrounding agents and a Memory Module to store strategies for each agent. The overall workflow includes a Collaboration Module that encourages autonomous vehicles to discuss the effective strategy and allocate roles, a reasoning engine to determine optimal behaviors based on assigned roles, and an Execution Module that controls vehicle actions using a hybrid approach combining rule-based models. Experimental results demonstrate that CoMAL achieves superior performance on the Flow benchmark. Additionally, we evaluate the impact of different language models and compare our framework with reinforcement learning approaches. It highlights the strong cooperative capability of LLM agents and presents a promising solution to the mixed-autonomy traffic challenge. The code is available at https://github.com/Hyan-Yao/CoMAL.


S$^2$AC: Energy-Based Reinforcement Learning with Stein Soft Actor Critic

arXiv.org Artificial Intelligence

Learning expressive stochastic policies instead of deterministic ones has been proposed to achieve better stability, sample complexity, and robustness. Notably, in Maximum Entropy Reinforcement Learning (MaxEnt RL), the policy is modeled as an expressive Energy-Based Model (EBM) over the Q-values. However, this formulation requires the estimation of the entropy of such EBMs, which is an open problem. To address this, previous MaxEnt RL methods either implicitly estimate the entropy, resulting in high computational complexity and variance (SQL), or follow a variational inference procedure that fits simplified actor distributions (e.g., Gaussian) for tractability (SAC). We propose Stein Soft Actor-Critic (S$^2$AC), a MaxEnt RL algorithm that learns expressive policies without compromising efficiency. Specifically, S$^2$AC uses parameterized Stein Variational Gradient Descent (SVGD) as the underlying policy. We derive a closed-form expression of the entropy of such policies. Our formula is computationally efficient and only depends on first-order derivatives and vector products. Empirical results show that S$^2$AC yields more optimal solutions to the MaxEnt objective than SQL and SAC in the multi-goal environment, and outperforms SAC and SQL on the MuJoCo benchmark. Our code is available at: https://github.com/SafaMessaoud/S2AC-Energy-Based-RL-with-Stein-Soft-Actor-Critic


Are Classification Robustness and Explanation Robustness Really Strongly Correlated? An Analysis Through Input Loss Landscape

arXiv.org Artificial Intelligence

This paper delves into the critical area of deep learning robustness, challenging the conventional belief that classification robustness and explanation robustness in image classification systems are inherently correlated. Through a novel evaluation approach leveraging clustering for efficient assessment of explanation robustness, we demonstrate that enhancing explanation robustness does not necessarily flatten the input loss landscape with respect to explanation loss - contrary to flattened loss landscapes indicating better classification robustness. To deeply investigate this contradiction, a groundbreaking training method designed to adjust the loss landscape with respect to explanation loss is proposed. Through the new training method, we uncover that although such adjustments can impact the robustness of explanations, they do not have an influence on the robustness of classification. These findings not only challenge the prevailing assumption of a strong correlation between the two forms of robustness but also pave new pathways for understanding relationship between loss landscape and explanation loss.


On Integrated Clustering and Outlier Detection

Neural Information Processing Systems

We model the joint clustering and outlier detection problem using an extension of the facility location formulation. The advantages of combining clustering and outlier selection include: (i) the resulting clusters tend to be compact and semantically coherent (ii) the clusters are more robust against data perturbations and (iii) the outliers are contextualised by the clusters and more interpretable. We provide a practical subgradient-based algorithm for the problem and also study the theoretical properties of algorithm in terms of approximation and convergence. Extensive evaluation on synthetic and real data sets attest to both the quality and scalability of our proposed method.