Goto

Collaborating Authors

 Pandit, Parthe


Implicit Bias of Linear RNNs

arXiv.org Machine Learning

Contemporary wisdom based on empirical studies suggests that standard recurrent neural networks (RNNs) do not perform well on tasks requiring long-term memory. However, precise reasoning for this behavior is still unknown. This paper provides a rigorous explanation of this property in the special case of linear RNNs. Although this work is limited to linear RNNs, even these systems have traditionally been difficult to analyze due to their non-linear parameterization. Using recently-developed kernel regime analysis, our main result shows that linear RNNs learned from random initializations are functionally equivalent to a certain weighted 1D-convolutional network. Importantly, the weightings in the equivalent model cause an implicit bias to elements with smaller time lags in the convolution and hence, shorter memory. The degree of this bias depends on the variance of the transition kernel matrix at initialization and is related to the classic exploding and vanishing gradients problem. The theory is validated in both synthetic and real data experiments.


Low-Rank Nonlinear Decoding of $\mu$-ECoG from the Primary Auditory Cortex

arXiv.org Machine Learning

This paper considers the problem of neural decoding from parallel neural measurements systems such as micro-electrocorticography ($\mu$-ECoG). In systems with large numbers of array elements at very high sampling rates, the dimension of the raw measurement data may be large. Learning neural decoders for this high-dimensional data can be challenging, particularly when the number of training samples is limited. To address this challenge, this work presents a novel neural network decoder with a low-rank structure in the first hidden layer. The low-rank constraints dramatically reduce the number of parameters in the decoder while still enabling a rich class of nonlinear decoder maps. The low-rank decoder is illustrated on $\mu$-ECoG data from the primary auditory cortex (A1) of awake rats. This decoding problem is particularly challenging due to the complexity of neural responses in the auditory cortex and the presence of confounding signals in awake animals. It is shown that the proposed low-rank decoder significantly outperforms models using standard dimensionality reduction techniques such as principal component analysis (PCA).


High-Dimensional Bernoulli Autoregressive Process with Long-Range Dependence

arXiv.org Machine Learning

We consider the problem of estimating the parameters of a multivariate Bernoulli process with auto-regressive feedback in the high-dimensional setting where the number of samples available is much less than the number of parameters. This problem arises in learning interconnections of networks of dynamical systems with spiking or binary-valued data. We allow the process to depend on its past up to a lag $p$, for a general $p \ge 1$, allowing for more realistic modeling in many applications. We propose and analyze an $\ell_1$-regularized maximum likelihood estimator (MLE) under the assumption that the parameter tensor is approximately sparse. Rigorous analysis of such estimators is made challenging by the dependent and non-Gaussian nature of the process as well as the presence of the nonlinearities and multi-level feedback. We derive precise upper bounds on the mean-squared estimation error in terms of the number of samples, dimensions of the process, the lag $p$ and other key statistical properties of the model. The ideas presented can be used in the high-dimensional analysis of regularized $M$-estimators for other sparse nonlinear and non-Gaussian processes with long-range dependence.


Asymptotics of MAP Inference in Deep Networks

arXiv.org Machine Learning

Deep generative priors are a powerful tool for reconstruction problems with complex data such as images and text. Inverse problems using such models require solving an inference problem of estimating the input and hidden units of the multi-layer network from its output. Maximum a priori (MAP) estimation is a widely-used inference method as it is straightforward to implement, and has been successful in practice. However, rigorous analysis of MAP inference in multi-layer networks is difficult. This work considers a recently-developed method, multi-layer vector approximate message passing (ML-VAMP), to study MAP inference in deep networks. It is shown that the mean squared error of the ML-VAMP estimate can be exactly and rigorously characterized in a certain high-dimensional random limit. The proposed method thus provides a tractable method for MAP inference with exact performance guarantees.


Plug-in Estimation in High-Dimensional Linear Inverse Problems: A Rigorous Analysis

Neural Information Processing Systems

Estimating a vector $\mathbf{x}$ from noisy linear measurements $\mathbf{Ax+w}$ often requires use of prior knowledge or structural constraints on $\mathbf{x}$ for accurate reconstruction. Several recent works have considered combining linear least-squares estimation with a generic or plug-in ``denoiser" function that can be designed in a modular manner based on the prior knowledge about $\mathbf{x}$. While these methods have shown excellent performance, it has been difficult to obtain rigorous performance guarantees. This work considers plug-in denoising combined with the recently-developed Vector Approximate Message Passing (VAMP) algorithm, which is itself derived via Expectation Propagation techniques. It shown that the mean squared error of this ``plug-in" VAMP can be exactly predicted for a large class of high-dimensional random $\Abf$ and denoisers. The method is illustrated in image reconstruction and parametric bilinear estimation.


Plug-in Estimation in High-Dimensional Linear Inverse Problems: A Rigorous Analysis

Neural Information Processing Systems

Estimating a vector $\mathbf{x}$ from noisy linear measurements $\mathbf{Ax+w}$ often requires use of prior knowledge or structural constraints on $\mathbf{x}$ for accurate reconstruction. Several recent works have considered combining linear least-squares estimation with a generic or plug-in ``denoiser" function that can be designed in a modular manner based on the prior knowledge about $\mathbf{x}$. While these methods have shown excellent performance, it has been difficult to obtain rigorous performance guarantees. This work considers plug-in denoising combined with the recently-developed Vector Approximate Message Passing (VAMP) algorithm, which is itself derived via Expectation Propagation techniques. It shown that the mean squared error of this ``plug-in" VAMP can be exactly predicted for a large class of high-dimensional random $\Abf$ and denoisers. The method is illustrated in image reconstruction and parametric bilinear estimation.