Pandit, Parthe
Feature maps for the Laplacian kernel and its generalizations
Ahir, Sudhendu, Pandit, Parthe
Recent applications of kernel methods in machine learning have seen a renewed interest in the Laplacian kernel, due to its stability to the bandwidth hyperparameter in comparison to the Gaussian kernel, as well as its expressivity being equivalent to that of the neural tangent kernel of deep fully connected networks. However, unlike the Gaussian kernel, the Laplacian kernel is not separable. This poses challenges for techniques to approximate it, especially via the random Fourier features (RFF) methodology and its variants. In this work, we provide random features for the Laplacian kernel and its two generalizations: Mat\'{e}rn kernel and the Exponential power kernel. We provide efficiently implementable schemes to sample weight matrices so that random features approximate these kernels. These weight matrices have a weakly coupled heavy-tailed randomness. Via numerical experiments on real datasets we demonstrate the efficacy of these random feature maps.
Fast training of large kernel models with delayed projections
Abedsoltan, Amirhesam, Ma, Siyuan, Pandit, Parthe, Belkin, Mikhail
Classical kernel machines have historically faced significant challenges in scaling to large datasets and model sizes--a key ingredient that has driven the success of neural networks. In this paper, we present a new methodology for building kernel machines that can scale efficiently with both data size and model size. Our algorithm introduces delayed projections to Preconditioned Stochastic Gradient Descent (PSGD) allowing the training of much larger models than was previously feasible, pushing the practical limits of kernel-based learning. They have also served as the foundation 2024) leverage the Nystrรถm Approximation (NA) in combination for understanding many significant phenomena in with other strategies to enhance performance. Despite these advantages, ASkotch combines it with block coordinate descent, the scalability of kernel methods has remained a persistent whereas Falkon combines it with the Conjugate Gradient challenge, particularly when applied to large datasets. However, this limitation is critical for expanding the utility these strategies are limited by model size due to memory of kernel-based techniques in modern machine learning applications.
Mirror Descent on Reproducing Kernel Banach Spaces
Kumar, Akash, Belkin, Mikhail, Pandit, Parthe
Recent advances in machine learning have led to increased interest in reproducing kernel Banach spaces (RKBS) as a more general framework that extends beyond reproducing kernel Hilbert spaces (RKHS). These works have resulted in the formulation of representer theorems under several regularized learning schemes. However, little is known about an optimization method that encompasses these results in this setting. This paper addresses a learning problem on Banach spaces endowed with a reproducing kernel, focusing on efficient optimization within RKBS. To tackle this challenge, we propose an algorithm based on mirror descent (MDA). Our approach involves an iterative method that employs gradient steps in the dual space of the Banach space using the reproducing kernel. We analyze the convergence properties of our algorithm under various assumptions and establish two types of results: first, we identify conditions under which a linear convergence rate is achievable, akin to optimization in the Euclidean setting, and provide a proof of the linear rate; second, we demonstrate a standard convergence rate in a constrained setting. Moreover, to instantiate this algorithm in practice, we introduce a novel family of RKBSs with $p$-norm ($p \neq 2$), characterized by both an explicit dual map and a kernel.
On the Nystrom Approximation for Preconditioning in Kernel Machines
Abedsoltan, Amirhesam, Belkin, Mikhail, Pandit, Parthe, Rademacher, Luis
Kernel methods are a popular class of nonlinear predictive models in machine learning. Scalable algorithms for learning kernel models need to be iterative in nature, but convergence can be slow due to poor conditioning. Spectral preconditioning is an important tool to speed-up the convergence of such iterative algorithms for training kernel models. However computing and storing a spectral preconditioner can be expensive which can lead to large computational and storage overheads, precluding the application of kernel methods to problems with large datasets. A Nystrom approximation of the spectral preconditioner is often cheaper to compute and store, and has demonstrated success in practical applications. In this paper we analyze the trade-offs of using such an approximated preconditioner. Specifically, we show that a sample of logarithmic size (as a function of the size of the dataset) enables the Nystrom-based approximated preconditioner to accelerate gradient descent nearly as well as the exact preconditioner, while also reducing the computational and storage overheads.
Mechanism of feature learning in convolutional neural networks
Beaglehole, Daniel, Radhakrishnan, Adityanarayanan, Pandit, Parthe, Belkin, Mikhail
Understanding the mechanism of how convolutional neural networks learn features from image data is a fundamental problem in machine learning and computer vision. In this work, we identify such a mechanism. We posit the Convolutional Neural Feature Ansatz, which states that covariances of filters in any convolutional layer are proportional to the average gradient outer product (AGOP) taken with respect to patches of the input to that layer. We present extensive empirical evidence for our ansatz, including identifying high correlation between covariances of filters and patch-based AGOPs for convolutional layers in standard neural architectures, such as AlexNet, VGG, and ResNets pre-trained on ImageNet. We also provide supporting theoretical evidence. We then demonstrate the generality of our result by using the patch-based AGOP to enable deep feature learning in convolutional kernel machines. We refer to the resulting algorithm as (Deep) ConvRFM and show that our algorithm recovers similar features to deep convolutional networks including the notable emergence of edge detectors. Moreover, we find that Deep ConvRFM overcomes previously identified limitations of convolutional kernels, such as their inability to adapt to local signals in images and, as a result, leads to sizable performance improvement over fixed convolutional kernels.
Toward Large Kernel Models
Abedsoltan, Amirhesam, Belkin, Mikhail, Pandit, Parthe
Recent studies indicate that kernel machines can often perform similarly or better than deep neural networks (DNNs) on small datasets. The interest in kernel machines has been additionally bolstered by the discovery of their equivalence to wide neural networks in certain regimes. However, a key feature of DNNs is their ability to scale the model size and training data size independently, whereas in traditional kernel machines model size is tied to data size. Because of this coupling, scaling kernel machines to large data has been computationally challenging. In this paper, we provide a way forward for constructing large-scale general kernel models, which are a generalization of kernel machines that decouples the model and data, allowing training on large datasets. Specifically, we introduce EigenPro 3.0, an algorithm based on projected dual preconditioned SGD and show scaling to model and data sizes which have not been possible with existing kernel methods.
Local Convergence of Gradient Descent-Ascent for Training Generative Adversarial Networks
Becker, Evan, Pandit, Parthe, Rangan, Sundeep, Fletcher, Alyson K.
Generative Adversarial Networks (GANs) are a popular formulation to train generative models for complex high dimensional data. The standard method for training GANs involves a gradient descent-ascent (GDA) procedure on a minimax optimization problem. This procedure is hard to analyze in general due to the nonlinear nature of the dynamics. We study the local dynamics of GDA for training a GAN with a kernel-based discriminator. This convergence analysis is based on a linearization of a non-linear dynamical system that describes the GDA iterations, under an \textit{isolated points model} assumption from [Becker et al. 2022]. Our analysis brings out the effect of the learning rates, regularization, and the bandwidth of the kernel discriminator, on the local convergence rate of GDA. Importantly, we show phase transitions that indicate when the system converges, oscillates, or diverges. We also provide numerical simulations that verify our claims.
Mechanism of feature learning in deep fully connected networks and kernel machines that recursively learn features
Radhakrishnan, Adityanarayanan, Beaglehole, Daniel, Pandit, Parthe, Belkin, Mikhail
In recent years neural networks have achieved impressive results on many technological and scientific tasks. Yet, the mechanism through which these models automatically select features, or patterns in data, for prediction remains unclear. Identifying such a mechanism is key to advancing performance and interpretability of neural networks and promoting reliable adoption of these models in scientific applications. In this paper, we identify and characterize the mechanism through which deep fully connected neural networks learn features. We posit the Deep Neural Feature Ansatz, which states that neural feature learning occurs by implementing the average gradient outer product to up-weight features strongly related to model output. Our ansatz sheds light on various deep learning phenomena including emergence of spurious features and simplicity biases and how pruning networks can increase performance, the "lottery ticket hypothesis." Moreover, the mechanism identified in our work leads to a backpropagation-free method for feature learning with any machine learning model. To demonstrate the effectiveness of this feature learning mechanism, we use it to enable feature learning in classical, non-feature learning models known as kernel machines and show that the resulting models, which we refer to as Recursive Feature Machines, achieve state-of-the-art performance on tabular data.
On the Inconsistency of Kernel Ridgeless Regression in Fixed Dimensions
Beaglehole, Daniel, Belkin, Mikhail, Pandit, Parthe
``Benign overfitting'', the ability of certain algorithms to interpolate noisy training data and yet perform well out-of-sample, has been a topic of considerable recent interest. We show, using a fixed design setup, that an important class of predictors, kernel machines with translation-invariant kernels, does not exhibit benign overfitting in fixed dimensions. In particular, the estimated predictor does not converge to the ground truth with increasing sample size, for any non-zero regression function and any (even adaptive) bandwidth selection. To prove these results, we give exact expressions for the generalization error, and its decomposition in terms of an approximation error and an estimation error that elicits a trade-off based on the selection of the kernel bandwidth. Our results apply to commonly used translation-invariant kernels such as Gaussian, Laplace, and Cauchy.
A note on Linear Bottleneck networks and their Transition to Multilinearity
Zhu, Libin, Pandit, Parthe, Belkin, Mikhail
For a wide neural network (WNN), when the network width is sufficiently large, there exists a linear function of parameters, arbitrarily close to the network function, in a ball of radius O(1) in the parameter space around random initialization. This local linearity explains the equivalence to the neural tangent kernel (NTK) regression for optimizing wide neural networks with small learning rates, first shown in [13]. However, an important assumption for this transition to linearity [18] to hold is that each layer must be sufficiently wide. If there is even one narrow "bottleneck" hidden layer, resulting in a so-called bottleneck neural network (BNN), the work [18] showed that the transition to linearity does not occur. An immediate question at this point is, What functions of the weights does a neural network with a bottleneck layer represent?