Panagiotou, Maria
The Role of Artificial Intelligence in Enhancing Insulin Recommendations and Therapy Outcomes
Panagiotou, Maria, Stroemmen, Knut, Brigato, Lorenzo, de Galan, Bastiaan E., Mougiakakou, Stavroula
The growing worldwide incidence of diabetes requires more effective approaches for managing blood glucose levels. Insulin delivery systems have advanced significantly, with artificial intelligence (AI) playing a key role in improving their precision and adaptability. AI algorithms, particularly those based on reinforcement learning, allow for personalised insulin dosing by continuously adapting to an individual's responses. Despite these advancements, challenges such as data privacy, algorithm transparency, and accessibility still need to be addressed. Continued progress and validation in AI-driven insulin delivery systems promise to improve therapy outcomes further, offering people more effective and individualised management of their diabetes. This paper presents an overview of current strategies, key challenges, and future directions.
Position: There are no Champions in Long-Term Time Series Forecasting
Brigato, Lorenzo, Morand, Rafael, Strømmen, Knut, Panagiotou, Maria, Schmidt, Markus, Mougiakakou, Stavroula
Recent advances in long-term time series forecasting have introduced numerous complex prediction models that consistently outperform previously published architectures. However, this rapid progression raises concerns regarding inconsistent benchmarking and reporting practices, which may undermine the reliability of these comparisons. Our position emphasizes the need to shift focus away from pursuing ever-more complex models and towards enhancing benchmarking practices through rigorous and standardized evaluation methods. To support our claim, we first perform a broad, thorough, and reproducible evaluation of the top-performing models on the most popular benchmark by training 3,500+ networks over 14 datasets. Then, through a comprehensive analysis, we find that slight changes to experimental setups or current evaluation metrics drastically shift the common belief that newly published results are advancing the state of the art. Our findings suggest the need for rigorous and standardized evaluation methods that enable more substantiated claims, including reproducible hyperparameter setups and statistical testing.