Goto

Collaborating Authors

 Pan, Zhufeng


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Interpretable Real-Time Win Prediction for Honor of Kings, a Popular Mobile MOBA Esport

arXiv.org Artificial Intelligence

With the rapid prevalence and explosive development of MOBA esports (Multiplayer Online Battle Arena electronic sports), many research efforts have been devoted to automatically predicting the game results (win predictions). While this task has great potential in various applications such as esports live streaming and game commentator AI systems, previous studies suffer from two major limitations: 1) insufficient real-time input features and high-quality training data; 2) non-interpretable inference processes of the black-box prediction models. To mitigate these issues, we collect and release a large-scale dataset that contains real-time game records with rich input features of the popular MOBA game Honor of Kings. For interpretable predictions, we propose a Two-Stage Spatial-Temporal Network (TSSTN) that can not only provide accurate real-time win predictions but also attribute the ultimate prediction results to the contributions of different features for interpretability. Experiment results and applications in real-world live streaming scenarios show that the proposed TSSTN model is effective both in prediction accuracy and interpretability.