Goto

Collaborating Authors

 Pan, Zhiwen


Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities

arXiv.org Artificial Intelligence

With the growing demand for seamless connectivity and intelligent communication, the integration of artificial intelligence (AI) and sixth-generation (6G) communication networks has emerged as a transformative paradigm. By embedding AI capabilities across various network layers, this integration enables optimized resource allocation, improved efficiency, and enhanced system robust performance, particularly in intricate and dynamic environments. This paper presents a comprehensive overview of AI and communication for 6G networks, with a focus on emphasizing their foundational principles, inherent challenges, and future research opportunities. We first review the integration of AI and communications in the context of 6G, exploring the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G. The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks, delineated across three progressive developmental stages. The first stage, AI for Network, focuses on employing AI to augment network performance, optimize efficiency, and enhance user service experiences. The second stage, Network for AI, highlights the role of the network in facilitating and buttressing AI operations and presents key enabling technologies, such as digital twins for AI and semantic communication. In the final stage, AI as a Service, it is anticipated that future 6G networks will innately provide AI functions as services, supporting application scenarios like immersive communication and intelligent industrial robots. In addition, we conduct an in-depth analysis of the critical challenges faced by the integration of AI and communications in 6G. Finally, we outline promising future research opportunities that are expected to drive the development and refinement of AI and 6G communications.


Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals

arXiv.org Artificial Intelligence

Nowadays, multi-sensor technologies are applied in many fields, e.g., Health Care (HC), Human Activity Recognition (HAR), and Industrial Control System (ICS). These sensors can generate a substantial amount of multivariate time-series data. Unsupervised anomaly detection on multi-sensor time-series data has been proven critical in machine learning researches. The key challenge is to discover generalized normal patterns by capturing spatial-temporal correlation in multi-sensor data. Beyond this challenge, the noisy data is often intertwined with the training data, which is likely to mislead the model by making it hard to distinguish between the normal, abnormal, and noisy data. Few of previous researches can jointly address these two challenges. In this paper, we propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M). We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD) to better distinguish between the noisy, normal, and abnormal data. Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bidirectional LSTM with Attention) to capture temporal dependence from time-series data. Finally, CAE-M jointly optimizes these two subnetworks. We empirically compare the proposed approach with several state-of-the-art anomaly detection methods on HAR and HC datasets. Experimental results demonstrate that our proposed model outperforms these existing methods.