Pan, Zhihong
Gradient-Free Classifier Guidance for Diffusion Model Sampling
Shenoy, Rahul, Pan, Zhihong, Balakrishnan, Kaushik, Cheng, Qisen, Jeon, Yongmoon, Yang, Heejune, Kim, Jaewon
Image generation using diffusion models have demonstrated outstanding learning capabilities, effectively capturing the full distribution of the training dataset. They are known to generate wide variations in sampled images, albeit with a trade-off in image fidelity. Guided sampling methods, such as classifier guidance (CG) and classifier-free guidance (CFG), focus sampling in well-learned high-probability regions to generate images of high fidelity, but each has its limitations. CG is computationally expensive due to the use of back-propagation for classifier gradient descent, while CFG, being gradient-free, is more efficient but compromises class label alignment compared to CG. In this work, we propose an efficient guidance method that fully utilizes a pre-trained classifier without using gradient descent. By using the classifier solely in inference mode, a time-adaptive reference class label and corresponding guidance scale are determined at each time step for guided sampling. Experiments on both class-conditioned and text-to-image generation diffusion models demonstrate that the proposed Gradient-free Classifier Guidance (GFCG) method consistently improves class prediction accuracy. We also show GFCG to be complementary to other guided sampling methods like CFG. When combined with the state-of-the-art Autoguidance (ATG), without additional computational overhead, it enhances image fidelity while preserving diversity. For ImageNet 512$\times$512, we achieve a record $\text{FD}_{\text{DINOv2}}$ of 23.09, while simultaneously attaining a higher classification Precision (94.3%) compared to ATG (90.2%)
Retrieving Conditions from Reference Images for Diffusion Models
Tang, Haoran, Zhou, Xin, Deng, Jieren, Pan, Zhihong, Tian, Hao, Chaudhari, Pratik
Recent diffusion-based subject driven generative methods have enabled image generations with good fidelity for specific objects or human portraits. However, to achieve better versatility for applications, we argue that not only improved datasets and evaluations are desired, but also more careful methods to retrieve only relevant information from conditional images are anticipated. To this end, we propose an anime figures dataset RetriBooru-V1, with enhanced identity and clothing labels. We state new tasks enabled by this dataset, and introduce a new diversity metric to measure success in completing these tasks, quantifying the flexibility of image generations. We establish an RAG-inspired baseline method, designed to retrieve precise conditional information from reference images. Then, we compare with current methods on existing task to demonstrate the capability of the proposed method. Finally, we provide baseline experiment results on new tasks, and conduct ablation studies on the possible structural choices.
Effective Real Image Editing with Accelerated Iterative Diffusion Inversion
Pan, Zhihong, Gherardi, Riccardo, Xie, Xiufeng, Huang, Stephen
Despite all recent progress, it is still challenging to edit and manipulate natural images with modern generative models. When using Generative Adversarial Network (GAN), one major hurdle is in the inversion process mapping a real image to its corresponding noise vector in the latent space, since its necessary to be able to reconstruct an image to edit its contents. Likewise for Denoising Diffusion Implicit Models (DDIM), the linearization assumption in each inversion step makes the whole deterministic inversion process unreliable. Existing approaches that have tackled the problem of inversion stability often incur in significant trade-offs in computational efficiency. In this work we propose an Accelerated Iterative Diffusion Inversion method, dubbed AIDI, that significantly improves reconstruction accuracy with minimal additional overhead in space and time complexity. By using a novel blended guidance technique, we show that effective results can be obtained on a large range of image editing tasks without large classifier-free guidance in inversion. Furthermore, when compared with other diffusion inversion based works, our proposed process is shown to be more robust for fast image editing in the 10 and 20 diffusion steps' regimes.
GBSD: Generative Bokeh with Stage Diffusion
Deng, Jieren, Zhou, Xin, Tian, Hao, Pan, Zhihong, Aguiar, Derek
The bokeh effect is an artistic technique that blurs out-of-focus areas in a photograph and has gained interest due to recent developments in text-to-image synthesis and the ubiquity of smart-phone cameras and photo-sharing apps. Prior work on rendering bokeh effects have focused on post hoc image manipulation to produce similar blurring effects in existing photographs using classical computer graphics or neural rendering techniques, but have either depth discontinuity artifacts or are restricted to reproducing bokeh effects that are present in the training data. More recent diffusion based models can synthesize images with an artistic style, but either require the generation of high-dimensional masks, expensive fine-tuning, or affect global image characteristics. In this paper, we present GBSD, the first generative text-to-image model that synthesizes photorealistic images with a bokeh style. Motivated by how image synthesis occurs progressively in diffusion models, our approach combines latent diffusion models with a 2-stage conditioning algorithm to render bokeh effects on semantically defined objects. Since we can focus the effect on objects, this semantic bokeh effect is more versatile than classical rendering techniques. We evaluate GBSD both quantitatively and qualitatively and demonstrate its ability to be applied in both text-to-image and image-to-image settings.
Fast Diffusion Probabilistic Model Sampling through the lens of Backward Error Analysis
Gao, Yansong, Pan, Zhihong, Zhou, Xin, Kang, Le, Chaudhari, Pratik
Denoising diffusion probabilistic models (DDPMs) are a class of powerful generative models. The past few years have witnessed the great success of DDPMs in generating high-fidelity samples. A significant limitation of the DDPMs is the slow sampling procedure. DDPMs generally need hundreds or thousands of sequential function evaluations (steps) of neural networks to generate a sample. This paper aims to develop a fast sampling method for DDPMs requiring much fewer steps while retaining high sample quality. The inference process of DDPMs approximates solving the corresponding diffusion ordinary differential equations (diffusion ODEs) in the continuous limit. This work analyzes how the backward error affects the diffusion ODEs and the sample quality in DDPMs. We propose fast sampling through the \textbf{Restricting Backward Error schedule (RBE schedule)} based on dynamically moderating the long-time backward error. Our method accelerates DDPMs without any further training. Our experiments show that sampling with an RBE schedule generates high-quality samples within only 8 to 20 function evaluations on various benchmark datasets. We achieved 12.01 FID in 8 function evaluations on the ImageNet $128\times128$, and a $20\times$ speedup compared with previous baseline samplers.