Goto

Collaborating Authors

 Pan, Yanghe


Large Model Based Agents: State-of-the-Art, Cooperation Paradigms, Security and Privacy, and Future Trends

arXiv.org Artificial Intelligence

With the rapid advancement of large models (LMs), the development of general-purpose intelligent agents powered by LMs has become a reality. It is foreseeable that in the near future, LM-driven general AI agents will serve as essential tools in production tasks, capable of autonomous communication and collaboration without human intervention. This paper investigates scenarios involving the autonomous collaboration of future LM agents. We review the current state of LM agents, the key technologies enabling LM agent collaboration, and the security and privacy challenges they face during cooperative operations. To this end, we first explore the foundational principles of LM agents, including their general architecture, key components, enabling technologies, and modern applications. We then discuss practical collaboration paradigms from data, computation, and knowledge perspectives to achieve connected intelligence among LM agents. After that, we analyze the security vulnerabilities and privacy risks associated with LM agents, particularly in multi-agent settings, examining underlying mechanisms and reviewing current and potential countermeasures. Lastly, we propose future research directions for building robust and secure LM agent ecosystems.


A Survey on ChatGPT: AI-Generated Contents, Challenges, and Solutions

arXiv.org Artificial Intelligence

With the widespread use of large artificial intelligence (AI) models such as ChatGPT, AI-generated content (AIGC) has garnered increasing attention and is leading a paradigm shift in content creation and knowledge representation. AIGC uses generative large AI algorithms to assist or replace humans in creating massive, high-quality, and human-like content at a faster pace and lower cost, based on user-provided prompts. Despite the recent significant progress in AIGC, security, privacy, ethical, and legal challenges still need to be addressed. This paper presents an in-depth survey of working principles, security and privacy threats, state-of-the-art solutions, and future challenges of the AIGC paradigm. Specifically, we first explore the enabling technologies, general architecture of AIGC, and discuss its working modes and key characteristics. Then, we investigate the taxonomy of security and privacy threats to AIGC and highlight the ethical and societal implications of GPT and AIGC technologies. Furthermore, we review the state-of-the-art AIGC watermarking approaches for regulatable AIGC paradigms regarding the AIGC model and its produced content. Finally, we identify future challenges and open research directions related to AIGC.


Social-Aware Clustered Federated Learning with Customized Privacy Preservation

arXiv.org Artificial Intelligence

A key feature of federated learning (FL) is to preserve the data privacy of end users. However, there still exist potential privacy leakage in exchanging gradients under FL. As a result, recent research often explores the differential privacy (DP) approaches to add noises to the computing results to address privacy concerns with low overheads, which however degrade the model performance. In this paper, we strike the balance of data privacy and efficiency by utilizing the pervasive social connections between users. Specifically, we propose SCFL, a novel Social-aware Clustered Federated Learning scheme, where mutually trusted individuals can freely form a social cluster and aggregate their raw model updates (e.g., gradients) inside each cluster before uploading to the cloud for global aggregation. By mixing model updates in a social group, adversaries can only eavesdrop the social-layer combined results, but not the privacy of individuals. We unfold the design of SCFL in three steps. \emph{i) Stable social cluster formation. Considering users' heterogeneous training samples and data distributions, we formulate the optimal social cluster formation problem as a federation game and devise a fair revenue allocation mechanism to resist free-riders. ii) Differentiated trust-privacy mapping}. For the clusters with low mutual trust, we design a customizable privacy preservation mechanism to adaptively sanitize participants' model updates depending on social trust degrees. iii) Distributed convergence}. A distributed two-sided matching algorithm is devised to attain an optimized disjoint partition with Nash-stable convergence. Experiments on Facebook network and MNIST/CIFAR-10 datasets validate that our SCFL can effectively enhance learning utility, improve user payoff, and enforce customizable privacy protection.