Pan, Xingyuan
Adapt-Pruner: Adaptive Structural Pruning for Efficient Small Language Model Training
Wang, Boyao, Pan, Rui, Diao, Shizhe, Pan, Xingyuan, Zhang, Jipeng, Pi, Renjie, Zhang, Tong
Small language models (SLMs) have attracted considerable attention from both academia and industry due to their broad range of applications in edge devices. To obtain SLMs with strong performance, conventional approaches either pre-train the models from scratch, which incurs substantial computational costs, or compress/prune existing large language models (LLMs), which results in performance drops and falls short in comparison to pre-training. In this paper, we investigate the family of acceleration methods that involve both structured pruning and model training. We found 1) layer-wise adaptive pruning (Adapt-Pruner) is extremely effective in LLMs and yields significant improvements over existing pruning techniques, 2) adaptive pruning equipped with further training leads to models comparable to those pre-training from scratch, 3) incremental pruning brings non-trivial performance gain by interleaving pruning with training and only removing a small portion of neurons ($\sim$5%) at a time. Experimental results on LLaMA-3.1-8B demonstrate that Adapt-Pruner outperforms conventional pruning methods, such as LLM-Pruner, FLAP, and SliceGPT, by an average of 1%-7% in accuracy on commonsense benchmarks. Additionally, Adapt-Pruner restores the performance of MobileLLM-125M to 600M on the MMLU benchmark with 200$\times$ fewer tokens via pruning from its larger counterparts, and discovers a new 1B model that surpasses LLaMA-3.2-1B in multiple benchmarks.
G-DIG: Towards Gradient-based Diverse and High-quality Instruction Data Selection for Machine Translation
Pan, Xingyuan, Huang, Luyang, Kang, Liyan, Liu, Zhicheng, Lu, Yu, Cheng, Shanbo
Large Language Models (LLMs) have demonstrated remarkable abilities in general scenarios. Instruction finetuning empowers them to align with humans in various tasks. Nevertheless, the Diversity and Quality of the instruction data remain two main challenges for instruction finetuning. With regard to this, in this paper, we propose a novel gradient-based method to automatically select high-quality and diverse instruction finetuning data for machine translation. Our key innovation centers around analyzing how individual training examples influence the model during training. Specifically, we select training examples that exert beneficial influences on the model as high-quality ones by means of Influence Function plus a small high-quality seed dataset. Moreover, to enhance the diversity of the training data we maximize the variety of influences they have on the model by clustering on their gradients and resampling. Extensive experiments on WMT22 and FLORES translation tasks demonstrate the superiority of our methods, and in-depth analysis further validates their effectiveness and generalization.
Learning to Speed Up Structured Output Prediction
Pan, Xingyuan, Srikumar, Vivek
Predicting structured outputs can be computationally onerous due to the combinatorially large output spaces. In this paper, we focus on reducing the prediction time of a trained black-box structured classifier without losing accuracy. To do so, we train a speedup classifier that learns to mimic a black-box classifier under the learning-to-search approach. As the structured classifier predicts more examples, the speedup classifier will operate as a learned heuristic to guide search to favorable regions of the output space. We present a mistake bound for the speedup classifier and identify inference situations where it can independently make correct judgments without input features. We evaluate our method on the task of entity and relation extraction and show that the speedup classifier outperforms even greedy search in terms of speed without loss of accuracy.