Pan, Peng
RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification
Shi, Rui, Yu, Xiaodong, Wang, Shengming, Zhang, Yijia, Xu, Lu, Pan, Peng, Ma, Chunlai
In this paper, we propose RFUAV as a new benchmark dataset for radio-frequency based (RF-based) unmanned aerial vehicle (UAV) identification and address the following challenges: Firstly, many existing datasets feature a restricted variety of drone types and insufficient volumes of raw data, which fail to meet the demands of practical applications. Secondly, existing datasets often lack raw data covering a broad range of signal-to-noise ratios (SNR), or do not provide tools for transforming raw data to different SNR levels. This limitation undermines the validity of model training and evaluation. Lastly, many existing datasets do not offer open-access evaluation tools, leading to a lack of unified evaluation standards in current research within this field. RFUAV comprises approximately 1.3 TB of raw frequency data collected from 37 distinct UAVs using the Universal Software Radio Peripheral (USRP) device in real-world environments. Through in-depth analysis of the RF data in RFUAV, we define a drone feature sequence called RF drone fingerprint, which aids in distinguishing drone signals. In addition to the dataset, RFUAV provides a baseline preprocessing method and model evaluation tools. Rigorous experiments demonstrate that these preprocessing methods achieve state-of-the-art (SOTA) performance using the provided evaluation tools. The RFUAV dataset and baseline implementation are publicly available at https://github.com/kitoweeknd/RFUAV/.
What makes a good BIM design: quantitative linking between design behavior and quality
Ni, Xiang-Rui, Pan, Peng, Lin, Jia-Rui
In the Architecture Engineering & Construction (AEC) industry, how design behaviors impact design quality remains unclear. This study proposes a novel approach, which, for the first time, identifies and quantitatively describes the relationship between design behaviors and quality of design based on Building Information Modeling (BIM). Real-time collection and log mining are integrated to collect raw data of design behaviors. Feature engineering and various machine learning models are then utilized for quantitative modeling and interpretation. Results confirm an existing quantifiable relationship which can be learned by various models. The best-performing model using Extremely Random Trees achieved an R2 value of 0.88 on the test set. Behavioral features related to designer's skill level and changes of design intentions are identified to have significant impacts on design quality. These findings deepen our understanding of the design process and help forming BIM designs with better quality.
Establishing Rigorous and Cost-effective Clinical Trials for Artificial Intelligence Models
Gao, Wanling, Huang, Yunyou, Cui, Dandan, Yu, Zhuoming, Liu, Wenjing, Liang, Xiaoshuang, Zhao, Jiahui, Xie, Jiyue, Li, Hao, Ma, Li, Ye, Ning, Kang, Yumiao, Luo, Dingfeng, Pan, Peng, Huang, Wei, Liu, Zhongmou, Hu, Jizhong, Zhao, Gangyuan, Jiang, Chongrong, Huang, Fan, Wei, Tianyi, Tang, Suqin, Xia, Bingjie, Zhang, Zhifei, Zhan, Jianfeng
A profound gap persists between artificial intelligence (AI) and clinical practice in medicine, primarily due to the lack of rigorous and cost-effective evaluation methodologies. State-of-the-art and state-of-the-practice AI model evaluations are limited to laboratory studies on medical datasets or direct clinical trials with no or solely patient-centered controls. Moreover, the crucial role of clinicians in collaborating with AI, pivotal for determining its impact on clinical practice, is often overlooked. For the first time, we emphasize the critical necessity for rigorous and cost-effective evaluation methodologies for AI models in clinical practice, featuring patient/clinician-centered (dual-centered) AI randomized controlled trials (DC-AI RCTs) and virtual clinician-based in-silico trials (VC-MedAI) as an effective proxy for DC-AI RCTs. Leveraging 7500 diagnosis records from two-phase inaugural DC-AI RCTs across 14 medical centers with 125 clinicians, our results demonstrate the necessity of DC-AI RCTs and the effectiveness of VC-MedAI. Notably, VC-MedAI performs comparably to human clinicians, replicating insights and conclusions from prospective DC-AI RCTs. We envision DC-AI RCTs and VC-MedAI as pivotal advancements, presenting innovative and transformative evaluation methodologies for AI models in clinical practice, offering a preclinical-like setting mirroring conventional medicine, and reshaping development paradigms in a cost-effective and fast-iterative manner. Chinese Clinical Trial Registration: ChiCTR2400086816.