Pan, Jing
Phi-4-Mini Technical Report: Compact yet Powerful Multimodal Language Models via Mixture-of-LoRAs
Microsoft, null, :, null, Abouelenin, Abdelrahman, Ashfaq, Atabak, Atkinson, Adam, Awadalla, Hany, Bach, Nguyen, Bao, Jianmin, Benhaim, Alon, Cai, Martin, Chaudhary, Vishrav, Chen, Congcong, Chen, Dong, Chen, Dongdong, Chen, Junkun, Chen, Weizhu, Chen, Yen-Chun, Chen, Yi-ling, Dai, Qi, Dai, Xiyang, Fan, Ruchao, Gao, Mei, Gao, Min, Garg, Amit, Goswami, Abhishek, Hao, Junheng, Hendy, Amr, Hu, Yuxuan, Jin, Xin, Khademi, Mahmoud, Kim, Dongwoo, Kim, Young Jin, Lee, Gina, Li, Jinyu, Li, Yunsheng, Liang, Chen, Lin, Xihui, Lin, Zeqi, Liu, Mengchen, Liu, Yang, Lopez, Gilsinia, Luo, Chong, Madan, Piyush, Mazalov, Vadim, Mitra, Arindam, Mousavi, Ali, Nguyen, Anh, Pan, Jing, Perez-Becker, Daniel, Platin, Jacob, Portet, Thomas, Qiu, Kai, Ren, Bo, Ren, Liliang, Roy, Sambuddha, Shang, Ning, Shen, Yelong, Singhal, Saksham, Som, Subhojit, Song, Xia, Sych, Tetyana, Vaddamanu, Praneetha, Wang, Shuohang, Wang, Yiming, Wang, Zhenghao, Wu, Haibin, Xu, Haoran, Xu, Weijian, Yang, Yifan, Yang, Ziyi, Yu, Donghan, Zabir, Ishmam, Zhang, Jianwen, Zhang, Li Lyna, Zhang, Yunan, Zhou, Xiren
We introduce Phi-4-Mini and Phi-4-Multimodal, compact yet highly capable language and multimodal models. Phi-4-Mini is a 3.8-billion-parameter language model trained on high-quality web and synthetic data, significantly outperforming recent open-source models of similar size and matching the performance of models twice its size on math and coding tasks requiring complex reasoning. This achievement is driven by a carefully curated synthetic data recipe emphasizing high-quality math and coding datasets. Compared to its predecessor, Phi-3.5-Mini, Phi-4-Mini features an expanded vocabulary size of 200K tokens to better support multilingual applications, as well as group query attention for more efficient long-sequence generation. Phi-4-Multimodal is a multimodal model that integrates text, vision, and speech/audio input modalities into a single model. Its novel modality extension approach leverages LoRA adapters and modality-specific routers to allow multiple inference modes combining various modalities without interference. For example, it now ranks first in the OpenASR leaderboard to date, although the LoRA component of the speech/audio modality has just 460 million parameters. Phi-4-Multimodal supports scenarios involving (vision + language), (vision + speech), and (speech/audio) inputs, outperforming larger vision-language and speech-language models on a wide range of tasks. Additionally, we experiment to further train Phi-4-Mini to enhance its reasoning capabilities. Despite its compact 3.8-billion-parameter size, this experimental version achieves reasoning performance on par with or surpassing significantly larger models, including DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B.
Target word activity detector: An approach to obtain ASR word boundaries without lexicon
Sivasankaran, Sunit, Sun, Eric, Li, Jinyu, Huang, Yan, Pan, Jing
Obtaining word timestamp information from end-to-end (E2E) ASR models remains challenging due to the lack of explicit time alignment during training. This issue is further complicated in multilingual models. Existing methods, either rely on lexicons or introduce additional tokens, leading to scalability issues and increased computational costs. In this work, we propose a new approach to estimate word boundaries without relying on lexicons. Our method leverages word embeddings from sub-word token units and a pretrained ASR model, requiring only word alignment information during training. Our proposed method can scale-up to any number of languages without incurring any additional cost. We validate our approach using a multilingual ASR model trained on five languages and demonstrate its effectiveness against a strong baseline.
WavLLM: Towards Robust and Adaptive Speech Large Language Model
Hu, Shujie, Zhou, Long, Liu, Shujie, Chen, Sanyuan, Hao, Hongkun, Pan, Jing, Liu, Xunying, Li, Jinyu, Sivasankaran, Sunit, Liu, Linquan, Wei, Furu
The recent advancements in large language models (LLMs) have revolutionized the field of natural language processing, progressively broadening their scope to multimodal perception and generation. However, effectively integrating listening capabilities into LLMs poses significant challenges, particularly with respect to generalizing across varied contexts and executing complex auditory tasks. In this work, we introduce WavLLM, a robust and adaptive speech large language model with dual encoders, and a prompt-aware LoRA weight adapter, optimized by a two-stage curriculum learning approach. Leveraging dual encoders, we decouple different types of speech information, utilizing a Whisper encoder to process the semantic content of speech, and a WavLM encoder to capture the unique characteristics of the speaker's identity. Within the curriculum learning framework, WavLLM first builds its foundational capabilities by optimizing on mixed elementary single tasks, followed by advanced multi-task training on more complex tasks such as combinations of the elementary tasks. To enhance the flexibility and adherence to different tasks and instructions, a prompt-aware LoRA weight adapter is introduced in the second advanced multi-task training stage. We validate the proposed model on universal speech benchmarks including tasks such as ASR, ST, SV, ER, and also apply it to specialized datasets like Gaokao English listening comprehension set for SQA, and speech Chain-of-Thought (CoT) evaluation set. Experiments demonstrate that the proposed model achieves state-of-the-art performance across a range of speech tasks on the same model size, exhibiting robust generalization capabilities in executing complex tasks using CoT approach. Furthermore, our model successfully completes Gaokao tasks without specialized training. The codes, models, audio, and Gaokao evaluation set can be accessed at \url{aka.ms/wavllm}.
COSMIC: Data Efficient Instruction-tuning For Speech In-Context Learning
Pan, Jing, Wu, Jian, Gaur, Yashesh, Sivasankaran, Sunit, Chen, Zhuo, Liu, Shujie, Li, Jinyu
We present a data and cost efficient way of incorporating the speech modality into a large language model (LLM). The resulting multi-modal LLM is a COntextual Speech Model with Instruction-following/in-context-learning Capabilities - COSMIC. Speech comprehension test question-answer (SQA) pairs are generated using GPT-3.5 based on the speech transcriptions as a part of the supervision for the instruction tuning. With fewer than 20M trainable parameters and as little as 450 hours of English speech data for SQA generation, COSMIC exhibits emergent instruction-following and in-context learning capabilities in speech-to-text tasks. The model is able to follow the given text instructions to generate text response even on the unseen EN$\to$X speech-to-text translation (S2TT) task with zero-shot setting. We evaluate the model's in-context learning via various tasks such as EN$\to$X S2TT and few-shot domain adaptation. And instruction-following capabilities are evaluated through a contextual biasing benchmark. Our results demonstrate the efficacy of the proposed low cost recipe for building a speech LLM and that with the new instruction-tuning data.
Improving Stability in Simultaneous Speech Translation: A Revision-Controllable Decoding Approach
Chen, Junkun, Xue, Jian, Wang, Peidong, Pan, Jing, Li, Jinyu
Simultaneous Speech-to-Text translation serves a critical role in real-time crosslingual communication. Despite the advancements in recent years, challenges remain in achieving stability in the translation process, a concern primarily manifested in the flickering of partial results. In this paper, we propose a novel revision-controllable method designed to address this issue. Our method introduces an allowed revision window within the beam search pruning process to screen out candidate translations likely to cause extensive revisions, leading to a substantial reduction in flickering and, crucially, providing the capability to completely eliminate flickering. The experiments demonstrate the proposed method can significantly improve the decoding stability without compromising substantially on the translation quality.