Goto

Collaborating Authors

 Pan, Jiayu


Age Optimal Sampling for Unreliable Channels under Unknown Channel Statistics

arXiv.org Artificial Intelligence

In this paper, we study a system in which a sensor forwards status updates to a receiver through an error-prone channel, while the receiver sends the transmission results back to the sensor via a reliable channel. Both channels are subject to random delays. To evaluate the timeliness of the status information at the receiver, we use the Age of Information (AoI) metric. The objective is to design a sampling policy that minimizes the expected time-average AoI, even when the channel statistics (e.g., delay distributions) are unknown. We first review the threshold structure of the optimal offline policy under known channel statistics and then reformulate the design of the online algorithm as a stochastic approximation problem. We propose a Robbins-Monro algorithm to solve this problem and demonstrate that the optimal threshold can be approximated almost surely. Moreover, we prove that the cumulative AoI regret of the online algorithm increases with rate $\mathcal{O}(\ln K)$, where $K$ is the number of successful transmissions. In addition, our algorithm is shown to be minimax order optimal, in the sense that for any online learning algorithm, the cumulative AoI regret up to the $K$-th successful transmissions grows with the rate at least $\Omega(\ln K)$ in the worst case delay distribution. Finally, we improve the stability of the proposed online learning algorithm through a momentum-based stochastic gradient descent algorithm. Simulation results validate the performance of our proposed algorithm.


Asynchronous Fractional Multi-Agent Deep Reinforcement Learning for Age-Minimal Mobile Edge Computing

arXiv.org Artificial Intelligence

In the realm of emerging real-time networked applications like cyber-physical systems (CPS), the Age of Information (AoI) has merged as a pivotal metric for evaluating the timeliness. To meet the high computational demands, such as those in intelligent manufacturing within CPS, mobile edge computing (MEC) presents a promising solution for optimizing computing and reducing AoI. In this work, we study the timeliness of computational-intensive updates and explores jointly optimize the task updating and offloading policies to minimize AoI. Specifically, we consider edge load dynamics and formulate a task scheduling problem to minimize the expected time-average AoI. The fractional objective introduced by AoI and the semi-Markov game nature of the problem render this challenge particularly difficult, with existing approaches not directly applicable. To this end, we present a comprehensive framework to fractional reinforcement learning (RL). We first introduce a fractional single-agent RL framework and prove its linear convergence. We then extend this to a fractional multi-agent RL framework with a convergence analysis. To tackle the challenge of asynchronous control in semi-Markov game, we further design an asynchronous model-free fractional multi-agent RL algorithm, where each device makes scheduling decisions with the hybrid action space without knowing the system dynamics and decisions of other devices. Experimental results show that our proposed algorithms reduce the average AoI by up to 52.6% compared with the best baseline algorithm in our experiments.