Goto

Collaborating Authors

 Pan, Jennifer


Political Neutrality in AI is Impossible- But Here is How to Approximate it

arXiv.org Artificial Intelligence

AI systems often exhibit political bias, influencing users' opinions and decision-making. While political neutrality-defined as the absence of bias-is often seen as an ideal solution for fairness and safety, this position paper argues that true political neutrality is neither feasible nor universally desirable due to its subjective nature and the biases inherent in AI training data, algorithms, and user interactions. However, inspired by Joseph Raz's philosophical insight that "neutrality [...] can be a matter of degree" (Raz, 1986), we argue that striving for some neutrality remains essential for promoting balanced AI interactions and mitigating user manipulation. Therefore, we use the term "approximation" of political neutrality to shift the focus from unattainable absolutes to achievable, practical proxies. We propose eight techniques for approximating neutrality across three levels of conceptualizing AI, examining their trade-offs and implementation strategies. In addition, we explore two concrete applications of these approximations to illustrate their practicality. Finally, we assess our framework on current large language models (LLMs) at the output level, providing a demonstration of how it can be evaluated. This work seeks to advance nuanced discussions of political neutrality in AI and promote the development of responsible, aligned language models.


Biased AI can Influence Political Decision-Making

arXiv.org Artificial Intelligence

As modern AI models become integral to everyday tasks, concerns about their inherent biases and their potential impact on human decision-making have emerged. While bias in models are well-documented, less is known about how these biases influence human decisions. This paper presents two interactive experiments investigating the effects of partisan bias in AI language models on political decision-making. Participants interacted freely with either a biased liberal, biased conservative, or unbiased control model while completing political decision-making tasks. We found that participants exposed to politically biased models were significantly more likely to adopt opinions and make decisions aligning with the AI's bias, regardless of their personal political partisanship. However, we also discovered that prior knowledge about AI could lessen the impact of the bias, highlighting the possible importance of AI education for robust bias mitigation. Our findings not only highlight the critical effects of interacting with biased AI and its ability to impact public discourse and political conduct, but also highlights potential techniques for mitigating these risks in the future.