Goto

Collaborating Authors

 Pan, Jeng-Shyang


BRBA: A Blocking-Based Association Rule Hiding Method

AAAI Conferences

Privacy preserving in association mining is an important research topic in the database security field. This paper has proposed a blocking-based method to solve the association rule hiding problem for data sharing. It aims at reducing undesirable side effects and increasing desirable side effects, while ensuring to conceal all sensitive rules. The candidate transactions are selected for sanitization based on their relations with border rules. Comparative experiments on real datasets demonstrate that the proposed method can achieve its goals.


Association Rule Hiding Based on Evolutionary Multi-Objective Optimization by Removing Items

AAAI Conferences

Today, people benefit from utilizing data mining technologies, such as association rule mining methods, to find valuable knowledge residing in a large amount of data. However, they also face the risk of exposing sensitive or confidential information, when data is shared among different organizations. Thus, a question arise: how can we prevent that sensitive knowledge is discovered, while ensuring that ordinary non-sensitive knowledge can be mined to the maximum extent possible. In this paper, we address the problem of privacy preserving in association rule mining from the perspective of multi-objective optimization. A new hiding method based evolutionary multi-objective optimization (EMO) is proposed and the side effects generated by the hiding process are formulated as optimization goals. EMO is used to find candidate transactions to modify so that side effects are minimized. Comparative experiments with exact methods on real datasets demonstrated that the proposed method can hide sensitive rules with fewer side effects.