Pan, Fei
GAS: Generative Auto-bidding with Post-training Search
Li, Yewen, Mao, Shuai, Gao, Jingtong, Jiang, Nan, Xu, Yunjian, Cai, Qingpeng, Pan, Fei, Jiang, Peng, An, Bo
Auto-bidding is essential in facilitating online advertising by automatically placing bids on behalf of advertisers. Generative auto-bidding, which generates bids based on an adjustable condition using models like transformers and diffusers, has recently emerged as a new trend due to its potential to learn optimal strategies directly from data and adjust flexibly to preferences. However, generative models suffer from low-quality data leading to a mismatch between condition, return to go, and true action value, especially in long sequential decision-making. Besides, the majority preference in the dataset may hinder models' generalization ability on minority advertisers' preferences. While it is possible to collect high-quality data and retrain multiple models for different preferences, the high cost makes it unaffordable, hindering the advancement of auto-bidding into the era of large foundation models. To address this, we propose a flexible and practical Generative Auto-bidding scheme using post-training Search, termed GAS, to refine a base policy model's output and adapt to various preferences. We use weak-to-strong search alignment by training small critics for different preferences and an MCTS-inspired search to refine the model's output. Specifically, a novel voting mechanism with transformer-based critics trained with policy indications could enhance search alignment performance. Additionally, utilizing the search, we provide a fine-tuning method for high-frequency preference scenarios considering computational efficiency. Extensive experiments conducted on the real-world dataset and online A/B test on the Kuaishou advertising platform demonstrate the effectiveness of GAS, achieving significant improvements, e.g., 1.554% increment of target cost.
ACQ: A Unified Framework for Automated Programmatic Creativity in Online Advertising
Wang, Ruizhi, Liu, Kai, Li, Bingjie, Rong, Yu, Cai, Qingpeng, Pan, Fei, Jiang, Peng
In online advertising, the demand-side platform (a.k.a. DSP) enables advertisers to create different ad creatives for real-time bidding. Intuitively, advertisers tend to create more ad creatives for a single photo to increase the probability of participating in bidding, further enhancing their ad cost. From the perspective of DSP, the following are two overlooked issues. On the one hand, the number of ad creatives cannot grow indefinitely. On the other hand, the marginal effects of ad cost diminish as the number of ad creatives increases. To this end, this paper proposes a two-stage framework named Automated Creatives Quota (ACQ) to achieve the automatic creation and deactivation of ad creatives. ACQ dynamically allocates the creative quota across multiple advertisers to maximize the revenue of the ad platform. ACQ comprises two components: a prediction module to estimate the cost of a photo under different numbers of ad creatives, and an allocation module to decide the quota for photos considering their estimated costs in the prediction module. Specifically, in the prediction module, we develop a multi-task learning model based on an unbalanced binary tree to effectively mitigate the target variable imbalance problem. In the allocation module, we formulate the quota allocation problem as a multiple-choice knapsack problem (MCKP) and develop an efficient solver to solve such large-scale problems involving tens of millions of ads. We performed extensive offline and online experiments to validate the superiority of our proposed framework, which increased cost by 9.34%.
LDACP: Long-Delayed Ad Conversions Prediction Model for Bidding Strategy
Cui, Peng, Yang, Yiming, Jin, Fusheng, Tang, Siyuan, Wang, Yunli, Yang, Fukang, Jia, Yalong, Cai, Qingpeng, Pan, Fei, Li, Changcheng, Jiang, Peng
In online advertising, once an ad campaign is deployed, the automated bidding system dynamically adjusts the bidding strategy to optimize Cost Per Action (CPA) based on the number of ad conversions. For ads with a long conversion delay, relying solely on the real-time tracked conversion number as a signal for bidding strategy can significantly overestimate the current CPA, leading to conservative bidding strategies. Therefore, it is crucial to predict the number of long-delayed conversions. Nonetheless, it is challenging to predict ad conversion numbers through traditional regression methods due to the wide range of ad conversion numbers. Previous regression works have addressed this challenge by transforming regression problems into bucket classification problems, achieving success in various scenarios. However, specific challenges arise when predicting the number of ad conversions: 1) The integer nature of ad conversion numbers exacerbates the discontinuity issue in one-hot hard labels; 2) The long-tail distribution of ad conversion numbers complicates tail data prediction. In this paper, we propose the Long-Delayed Ad Conversions Prediction model for bidding strategy (LDACP), which consists of two sub-modules. To alleviate the issue of discontinuity in one-hot hard labels, the Bucket Classification Module with label Smoothing method (BCMS) converts one-hot hard labels into non-normalized soft labels, then fits these soft labels by minimizing classification loss and regression loss. To address the challenge of predicting tail data, the Value Regression Module with Proxy labels (VRMP) uses the prediction bias of aggregated pCTCVR as proxy labels. Finally, a Mixture of Experts (MoE) structure integrates the predictions from BCMS and VRMP to obtain the final predicted ad conversion number.
Robotic transcatheter tricuspid valve replacement with hybrid enhanced intelligence: a new paradigm and first-in-vivo study
Wang, Shuangyi, Lin, Haichuan, Xie, Yiping, Wang, Ziqi, Chen, Dong, Tan, Longyue, Hou, Xilong, Chen, Chen, Zhou, Xiao-Hu, Lin, Shengtao, Pan, Fei, So, Kent Chak-Yu, Hou, Zeng-Guang
Transcatheter tricuspid valve replacement (TTVR) is the latest treatment for tricuspid regurgitation and is in the early stages of clinical adoption. Intelligent robotic approaches are expected to overcome the challenges of surgical manipulation and widespread dissemination, but systems and protocols with high clinical utility have not yet been reported. In this study, we propose a complete solution that includes a passive stabilizer, robotic drive, detachable delivery catheter and valve manipulation mechanism. Working towards autonomy, a hybrid augmented intelligence approach based on reinforcement learning, Monte Carlo probabilistic maps and human-robot co-piloted control was introduced. Systematic tests in phantom and first-in-vivo animal experiments were performed to verify that the system design met the clinical requirement. Furthermore, the experimental results confirmed the advantages of co-piloted control over conventional master-slave control in terms of time efficiency, control efficiency, autonomy and stability of operation. In conclusion, this study provides a comprehensive pathway for robotic TTVR and, to our knowledge, completes the first animal study that not only successfully demonstrates the application of hybrid enhanced intelligence in interventional robotics, but also provides a solution with high application value for a cutting-edge procedure.
Fine-grained Background Representation for Weakly Supervised Semantic Segmentation
Yin, Xu, Im, Woobin, Min, Dongbo, Huo, Yuchi, Pan, Fei, Yoon, Sung-Eui
Generating reliable pseudo masks from image-level labels is challenging in the weakly supervised semantic segmentation (WSSS) task due to the lack of spatial information. Prevalent class activation map (CAM)-based solutions are challenged to discriminate the foreground (FG) objects from the suspicious background (BG) pixels (a.k.a. co-occurring) and learn the integral object regions. This paper proposes a simple fine-grained background representation (FBR) method to discover and represent diverse BG semantics and address the co-occurring problems. We abandon using the class prototype or pixel-level features for BG representation. Instead, we develop a novel primitive, negative region of interest (NROI), to capture the fine-grained BG semantic information and conduct the pixel-to-NROI contrast to distinguish the confusing BG pixels. We also present an active sampling strategy to mine the FG negatives on-the-fly, enabling efficient pixel-to-pixel intra-foreground contrastive learning to activate the entire object region. Thanks to the simplicity of design and convenience in use, our proposed method can be seamlessly plugged into various models, yielding new state-of-the-art results under various WSSS settings across benchmarks. Leveraging solely image-level (I) labels as supervision, our method achieves 73.2 mIoU and 45.6 mIoU segmentation results on Pascal Voc and MS COCO test sets, respectively. Furthermore, by incorporating saliency maps as an additional supervision signal (I+S), we attain 74.9 mIoU on Pascal Voc test set. Concurrently, our FBR approach demonstrates meaningful performance gains in weakly-supervised instance segmentation (WSIS) tasks, showcasing its robustness and strong generalization capabilities across diverse domains.
ImageNet-D: Benchmarking Neural Network Robustness on Diffusion Synthetic Object
Zhang, Chenshuang, Pan, Fei, Kim, Junmo, Kweon, In So, Mao, Chengzhi
We establish rigorous benchmarks for visual perception robustness. Synthetic images such as ImageNet-C, ImageNet-9, and Stylized ImageNet provide specific type of evaluation over synthetic corruptions, backgrounds, and textures, yet those robustness benchmarks are restricted in specified variations and have low synthetic quality. In this work, we introduce generative model as a data source for synthesizing hard images that benchmark deep models' robustness. Leveraging diffusion models, we are able to generate images with more diversified backgrounds, textures, and materials than any prior work, where we term this benchmark as ImageNet-D. Experimental results show that ImageNet-D results in a significant accuracy drop to a range of vision models, from the standard ResNet visual classifier to the latest foundation models like CLIP and MiniGPT-4, significantly reducing their accuracy by up to 60\%. Our work suggests that diffusion models can be an effective source to test vision models. The code and dataset are available at https://github.com/chenshuang-zhang/imagenet_d.
Dual-View Selective Instance Segmentation Network for Unstained Live Adherent Cells in Differential Interference Contrast Images
Pan, Fei, Wu, Yutong, Cui, Kangning, Chen, Shuxun, Li, Yanfang, Liu, Yaofang, Shakoor, Adnan, Zhao, Han, Lu, Beijia, Zhi, Shaohua, Chan, Raymond, Sun, Dong
The cell, the fundamental unit of life, is a complex of material metabolism, energy conversion, and information regulation. For a typical cell, whether a bacterial or an animal cell, water accounts for about 70% of its weight, which causes it transparent [1]. Consequently, when such a cell is observed under a bright-field microscope, the contrast is very weak, leading to poor image quality. So, it is best to use a phase contrast microscope or a differential interference contrast (DIC) microscope to observe live cells. The former, a phase contrast microscope, reveals more detail of a cell's internal structures and discerns its attachments to nearby cells. While the latter, a DIC microscope, provides pseudo-three-dimensional images with a shadow-cast appearance. In addition to these two imaging modes, fluorescence microscopy is a commonly used approach for observing specific macromolecules, such as proteins and nucleic acids in cells in modern biological laboratories [2]. In a fluorescence microscope, a short-wavelength excitation light passing through the excitation filter irradiates the fluorescent molecules (fluorophores) marked in the sample to generate visible light of a particular wavelength that can be seen by the viewer or digitally captured using a complementary metal oxide semiconductor (CMOS) or charge-coupled device (CCD).
Learning to Advertise for Organic Traffic Maximization in E-Commerce Product Feeds
Chen, Dagui, Jin, Junqi, Zhang, Weinan, Pan, Fei, Niu, Lvyin, Yu, Chuan, Wang, Jun, Li, Han, Xu, Jian, Gai, Kun
Most e-commerce product feeds provide blended results of advertised products and recommended products to consumers. The underlying advertising and recommendation platforms share similar if not exactly the same set of candidate products. Consumers' behaviors on the advertised results constitute part of the recommendation model's training data and therefore can influence the recommended results. We refer to this process as Leverage. Considering this mechanism, we propose a novel perspective that advertisers can strategically bid through the advertising platform to optimize their recommended organic traffic. By analyzing the real-world data, we first explain the principles of Leverage mechanism, i.e., the dynamic models of Leverage. Then we introduce a novel Leverage optimization problem and formulate it with a Markov Decision Process. To deal with the sample complexity challenge in model-free reinforcement learning, we propose a novel Hybrid Training Leverage Bidding (HTLB) algorithm which combines the real-world samples and the emulator-generated samples to boost the learning speed and stability. Our offline experiments as well as the results from the online deployment demonstrate the superior performance of our approach.
Optimized Cost per Click in Taobao Display Advertising
Zhu, Han, Jin, Junqi, Tan, Chang, Pan, Fei, Zeng, Yifan, Li, Han, Gai, Kun
Taobao, as the largest online retail platform in the world, provides billions of online display advertising impressions for millions of advertisers every day. For commercial purposes, the advertisers bid for specific spots and target crowds to compete for business traffic. The platform chooses the most suitable ads to display in tens of milliseconds. Common pricing methods include cost per mille (CPM) and cost per click (CPC). Traditional advertising systems target certain traits of users and ad placements with fixed bids, essentially regarded as coarse-grained matching of bid and traffic quality. However, the fixed bids set by the advertisers competing for different quality requests cannot fully optimize the advertisers' key requirements. Moreover, the platform has to be responsible for the business revenue and user experience. Thus, we proposed a bid optimizing strategy called optimized cost per click (OCPC) which automatically adjusts the bid to achieve finer matching of bid and traffic quality of page view (PV) request granularity. Our approach optimizes advertisers' demands, platform business revenue and user experience and as a whole improves traffic allocation efficiency. We have validated our approach in Taobao display advertising system in production. The online A/B test shows our algorithm yields substantially better results than previous fixed bid manner.