Pan, Cunhua
Multi-modal Iterative and Deep Fusion Frameworks for Enhanced Passive DOA Sensing via a Green Massive H2AD MIMO Receiver
Bai, Jiatong, Chen, Minghao, Tang, Wankai, Li, Yifan, Pan, Cunhua, Wu, Yongpeng, Shu, Feng
Most existing DOA estimation methods assume ideal source incident angles with minimal noise. Moreover, directly using pre-estimated angles to calculate weighted coefficients can lead to performance loss. Thus, a green multi-modal (MM) fusion DOA framework is proposed to realize a more practical, low-cost and high time-efficiency DOA estimation for a H$^2$AD array. Firstly, two more efficient clustering methods, global maximum cos\_similarity clustering (GMaxCS) and global minimum distance clustering (GMinD), are presented to infer more precise true solutions from the candidate solution sets. Based on this, an iteration weighted fusion (IWF)-based method is introduced to iteratively update weighted fusion coefficients and the clustering center of the true solution classes by using the estimated values. Particularly, the coarse DOA calculated by fully digital (FD) subarray, serves as the initial cluster center. The above process yields two methods called MM-IWF-GMaxCS and MM-IWF-GMinD. To further provide a higher-accuracy DOA estimation, a fusion network (fusionNet) is proposed to aggregate the inferred two-part true angles and thus generates two effective approaches called MM-fusionNet-GMaxCS and MM-fusionNet-GMinD. The simulation outcomes show the proposed four approaches can achieve the ideal DOA performance and the CRLB. Meanwhile, proposed MM-fusionNet-GMaxCS and MM-fusionNet-GMinD exhibit superior DOA performance compared to MM-IWF-GMaxCS and MM-IWF-GMinD, especially in extremely-low SNR range.
Large Generative Model-assisted Talking-face Semantic Communication System
Jiang, Feibo, Tu, Siwei, Dong, Li, Pan, Cunhua, Wang, Jiangzhou, You, Xiaohu
The rapid development of generative Artificial Intelligence (AI) continually unveils the potential of Semantic Communication (SemCom). However, current talking-face SemCom systems still encounter challenges such as low bandwidth utilization, semantic ambiguity, and diminished Quality of Experience (QoE). This study introduces a Large Generative Model-assisted Talking-face Semantic Communication (LGM-TSC) System tailored for the talking-face video communication. Firstly, we introduce a Generative Semantic Extractor (GSE) at the transmitter based on the FunASR model to convert semantically sparse talking-face videos into texts with high information density. Secondly, we establish a private Knowledge Base (KB) based on the Large Language Model (LLM) for semantic disambiguation and correction, complemented by a joint knowledge base-semantic-channel coding scheme. Finally, at the receiver, we propose a Generative Semantic Reconstructor (GSR) that utilizes BERT-VITS2 and SadTalker models to transform text back into a high-QoE talking-face video matching the user's timbre. Simulation results demonstrate the feasibility and effectiveness of the proposed LGM-TSC system.
Personalized Wireless Federated Learning for Large Language Models
Jiang, Feibo, Dong, Li, Tu, Siwei, Peng, Yubo, Wang, Kezhi, Yang, Kun, Pan, Cunhua, Niyato, Dusit
Large Language Models (LLMs) have revolutionized natural language processing tasks. However, their deployment in wireless networks still face challenges, i.e., a lack of privacy and security protection mechanisms. Federated Learning (FL) has emerged as a promising approach to address these challenges. Yet, it suffers from issues including inefficient handling with big and heterogeneous data, resource-intensive training, and high communication overhead. To tackle these issues, we first compare different learning stages and their features of LLMs in wireless networks. Next, we introduce two personalized wireless federated fine-tuning methods with low communication overhead, i.e., (1) Personalized Federated Instruction Tuning (PFIT), which employs reinforcement learning to fine-tune local LLMs with diverse reward models to achieve personalization; (2) Personalized Federated Task Tuning (PFTT), which can leverage global adapters and local Low-Rank Adaptations (LoRA) to collaboratively fine-tune local LLMs, where the local LoRAs can be applied to achieve personalization without aggregation. Finally, we perform simulations to demonstrate the effectiveness of the proposed two methods and comprehensively discuss open issues.
Large Generative Model Assisted 3D Semantic Communication
Jiang, Feibo, Peng, Yubo, Dong, Li, Wang, Kezhi, Yang, Kun, Pan, Cunhua, You, Xiaohu
Semantic Communication (SC) is a novel paradigm for data transmission in 6G. However, there are several challenges posed when performing SC in 3D scenarios: 1) 3D semantic extraction; 2) Latent semantic redundancy; and 3) Uncertain channel estimation. To address these issues, we propose a Generative AI Model assisted 3D SC (GAM-3DSC) system. Firstly, we introduce a 3D Semantic Extractor (3DSE), which employs generative AI models, including Segment Anything Model (SAM) and Neural Radiance Field (NeRF), to extract key semantics from a 3D scenario based on user requirements. The extracted 3D semantics are represented as multi-perspective images of the goal-oriented 3D object. Then, we present an Adaptive Semantic Compression Model (ASCM) for encoding these multi-perspective images, in which we use a semantic encoder with two output heads to perform semantic encoding and mask redundant semantics in the latent semantic space, respectively. Next, we design a conditional Generative adversarial network and Diffusion model aided-Channel Estimation (GDCE) to estimate and refine the Channel State Information (CSI) of physical channels. Finally, simulation results demonstrate the advantages of the proposed GAM-3DSC system in effectively transmitting the goal-oriented 3D scenario.
Large Language Model Enhanced Multi-Agent Systems for 6G Communications
Jiang, Feibo, Dong, Li, Peng, Yubo, Wang, Kezhi, Yang, Kun, Pan, Cunhua, Niyato, Dusit, Dobre, Octavia A.
The rapid development of the Large Language Model (LLM) presents huge opportunities for 6G communications, e.g., network optimization and management by allowing users to input task requirements to LLMs by nature language. However, directly applying native LLMs in 6G encounters various challenges, such as a lack of private communication data and knowledge, limited logical reasoning, evaluation, and refinement abilities. Integrating LLMs with the capabilities of retrieval, planning, memory, evaluation and reflection in agents can greatly enhance the potential of LLMs for 6G communications. To this end, we propose a multi-agent system with customized communication knowledge and tools for solving communication related tasks using natural language, comprising three components: (1) Multi-agent Data Retrieval (MDR), which employs the condensate and inference agents to refine and summarize communication knowledge from the knowledge base, expanding the knowledge boundaries of LLMs in 6G communications; (2) Multi-agent Collaborative Planning (MCP), which utilizes multiple planning agents to generate feasible solutions for the communication related task from different perspectives based on the retrieved knowledge; (3) Multi-agent Evaluation and Reflecxion (MER), which utilizes the evaluation agent to assess the solutions, and applies the reflexion agent and refinement agent to provide improvement suggestions for current solutions. Finally, we validate the effectiveness of the proposed multi-agent system by designing a semantic communication system, as a case study of 6G communications.
Large AI Model Empowered Multimodal Semantic Communications
Jiang, Feibo, Peng, Yubo, Dong, Li, Wang, Kezhi, Yang, Kun, Pan, Cunhua, You, Xiaohu
Multimodal signals, including text, audio, image and video, can be integrated into Semantic Communication (SC) for providing an immersive experience with low latency and high quality at the semantic level. However, the multimodal SC has several challenges, including data heterogeneity, semantic ambiguity, and signal fading. Recent advancements in large AI models, particularly in Multimodal Language Model (MLM) and Large Language Model (LLM), offer potential solutions for these issues. To this end, we propose a Large AI Model-based Multimodal SC (LAM-MSC) framework, in which we first present the MLM-based Multimodal Alignment (MMA) that utilizes the MLM to enable the transformation between multimodal and unimodal data while preserving semantic consistency. Then, a personalized LLM-based Knowledge Base (LKB) is proposed, which allows users to perform personalized semantic extraction or recovery through the LLM. This effectively addresses the semantic ambiguity. Finally, we apply the Conditional Generative adversarial networks-based channel Estimation (CGE) to obtain Channel State Information (CSI). This approach effectively mitigates the impact of fading channels in SC. Finally, we conduct simulations that demonstrate the superior performance of the LAM-MSC framework.
Large AI Model-Based Semantic Communications
Jiang, Feibo, Peng, Yubo, Dong, Li, Wang, Kezhi, Yang, Kun, Pan, Cunhua, You, Xiaohu
Semantic communication (SC) is an emerging intelligent paradigm, offering solutions for various future applications like metaverse, mixed-reality, and the Internet of everything. However, in current SC systems, the construction of the knowledge base (KB) faces several issues, including limited knowledge representation, frequent knowledge updates, and insecure knowledge sharing. Fortunately, the development of the large AI model provides new solutions to overcome above issues. Here, we propose a large AI model-based SC framework (LAM-SC) specifically designed for image data, where we first design the segment anything model (SAM)-based KB (SKB) that can split the original image into different semantic segments by universal semantic knowledge. Then, we present an attention-based semantic integration (ASI) to weigh the semantic segments generated by SKB without human participation and integrate them as the semantic-aware image. Additionally, we propose an adaptive semantic compression (ASC) encoding to remove redundant information in semantic features, thereby reducing communication overhead. Finally, through simulations, we demonstrate the effectiveness of the LAM-SC framework and the significance of the large AI model-based KB development in future SC paradigms.
Over-the-Air Federated Averaging with Limited Power and Privacy Budgets
Yan, Na, Wang, Kezhi, Pan, Cunhua, Chai, Kok Keong, Shu, Feng, Wang, Jiangzhou
To jointly overcome the communication bottleneck and privacy leakage of wireless federated learning (FL), this paper studies a differentially private over-the-air federated averaging (DP-OTA-FedAvg) system with a limited sum power budget. With DP-OTA-FedAvg, the gradients are aligned by an alignment coefficient and aggregated over the air, and channel noise is employed to protect privacy. We aim to improve the learning performance by jointly designing the device scheduling, alignment coefficient, and the number of aggregation rounds of federated averaging (FedAvg) subject to sum power and privacy constraints. We first present the privacy analysis based on differential privacy (DP) to quantify the impact of the alignment coefficient on privacy preservation in each communication round. Furthermore, to study how the device scheduling, alignment coefficient, and the number of the global aggregation affect the learning process, we conduct the convergence analysis of DP-OTA-FedAvg in the cases of convex and non-convex loss functions. Based on these analytical results, we formulate an optimization problem to minimize the optimality gap of the DP-OTA-FedAvg subject to limited sum power and privacy budgets. The problem is solved by decoupling it into two sub-problems. Given the number of communication rounds, we conclude the relationship between the number of scheduled devices and the alignment coefficient, which offers a set of potential optimal solution pairs of device scheduling and the alignment coefficient. Thanks to the reduced search space, the optimal solution can be efficiently obtained. The effectiveness of the proposed policy is validated through simulations.
Learning-Based Path Planning for Long-Range Autonomous Valet Parking
Khalid, Muhammad, Wang, Liang, Wang, Kezhi, Pan, Cunhua, Aslam, Nauman, Cao, Yue
In this paper, to reduce the congestion rate at the city center and increase the quality of experience (QoE) of each user, the framework of long-range autonomous valet parking (LAVP) is presented, where an Electric Autonomous Vehicle (EAV) is deployed in the city, which can pick up, drop off users at their required spots, and then drive to the car park out of city center autonomously. In this framework, we aim to minimize the overall distance of the EAV, while guarantee all users are served, i.e., picking up, and dropping off users at their required spots through optimizing the path planning of the EAV and number of serving time slots. To this end, we first propose a learning based algorithm, which is named as Double-Layer Ant Colony Optimization (DL-ACO) algorithm to solve the above problem in an iterative way. Then, to make the real-time decision, while consider the dynamic environment (i.e., the EAV may pick up and drop off users from different locations), we further present a deep reinforcement learning (DRL) based algorithm, which is known as deep Q network (DQN). The experimental results show that the DL-ACO and DQN-based algorithms both achieve the considerable performance.
Distributed Resource Scheduling for Large-Scale MEC Systems: A Multi-Agent Ensemble Deep Reinforcement Learning with Imitation Acceleration
Jiang, Feibo, Dong, Li, Wang, Kezhi, Yang, Kun, Pan, Cunhua
We consider the optimization of distributed resource scheduling to minimize the sum of task latency and energy consumption for all the Internet of things devices (IoTDs) in a large-scale mobile edge computing (MEC) system. To address this problem, we propose a distributed intelligent resource scheduling (DIRS) framework, which includes centralized training relying on the global information and distributed decision making by each agent deployed in each MEC server. More specifically, we first introduce a novel multi-agent ensemble-assisted distributed deep reinforcement learning (DRL) architecture, which can simplify the overall neural network structure of each agent by partitioning the state space and also improve the performance of a single agent by combining decisions of all the agents. Secondly, we apply action refinement to enhance the exploration ability of the proposed DIRS framework, where the near-optimal state-action pairs are obtained by a novel L\'evy flight search. Finally, an imitation acceleration scheme is presented to pre-train all the agents, which can significantly accelerate the learning process of the proposed framework through learning the professional experience from a small amount of demonstration data. Extensive simulations are conducted to demonstrate that the proposed DIRS framework is efficient and outperforms the existing benchmark schemes.