Goto

Collaborating Authors

 Paliotta, Daniele


Thinking Slow, Fast: Scaling Inference Compute with Distilled Reasoners

arXiv.org Artificial Intelligence

Recent advancements have demonstrated that the performance of large language models (LLMs) can be significantly enhanced by scaling computational resources at test time. A common strategy involves generating multiple Chain-of-Thought (CoT) trajectories and aggregating their outputs through various selection mechanisms. This raises a fundamental question: can models with lower complexity leverage their superior generation throughput to outperform similarly sized Transformers for a fixed computational budget? To address this question and overcome the lack of strong subquadratic reasoners, we distill pure and hybrid Mamba models from pretrained Transformers. Trained on only 8 billion tokens, our distilled models show strong performance and scaling on mathematical reasoning datasets while being much faster at inference for large batches and long sequences. Despite the zero-shot performance hit due to distillation, both pure and hybrid Mamba models can scale their coverage and accuracy performance past their Transformer teacher models under fixed time budgets, opening a new direction for scaling inference compute.


Leveraging the true depth of LLMs

arXiv.org Artificial Intelligence

Large Language Models demonstrate remarkable capabilities at the cost of high compute requirements. While recent research has shown that intermediate layers can be removed or have their order shuffled without impacting performance significantly, these findings have not been employed to reduce the computational cost of inference. We investigate several potential ways to reduce the depth of pre-trained LLMs without significantly affecting performance. Leveraging our insights, we present a novel approach that exploits this decoupling between layers by grouping some of them into pairs that can be evaluated in parallel. This modification of the computational graph -- through better parallelism -- results in an average improvement of around 1.20x on the number of tokens generated per second, without re-training nor fine-tuning, while retaining 95%-99% of the original accuracy. Empirical evaluation demonstrates that this approach significantly improves serving efficiency while maintaining model performance, offering a practical improvement for large-scale LLM deployment.


Understanding and Minimising Outlier Features in Neural Network Training

arXiv.org Artificial Intelligence

Outlier Features (OF) are neurons whose activation magnitudes significantly exceed the average over a neural network's (NN) width. They are well known to emerge during standard transformer training and have the undesirable effect of hindering quantisation in afflicted models. Despite their practical importance, little is known behind why OFs emerge during training, nor how one can minimise them. Our work focuses on the above questions, first identifying several quantitative metrics, such as the kurtosis over neuron activation norms, to measure OFs. With these metrics, we study how architectural and optimisation choices influence OFs, and provide practical insights to minimise OFs during training. As highlights, we emphasise the importance of controlling signal propagation throughout training, and propose the Outlier Protected transformer block, which removes standard Pre-Norm layers to mitigate OFs, without loss of convergence speed or training stability. Overall, our findings shed new light on our understanding of, our ability to prevent, and the complexity of this important facet in NN training dynamics.


Faster Causal Attention Over Large Sequences Through Sparse Flash Attention

arXiv.org Artificial Intelligence

Transformer-based language models have found many diverse applications requiring them to process sequences of increasing length. For these applications, the causal self-attention -- which is the only component scaling quadratically w.r.t. the sequence length -- becomes a central concern. While many works have proposed schemes to sparsify the attention patterns and reduce the computational overhead of self-attention, those are often limited by implementations concerns and end up imposing a simple and static structure over the attention matrix. Conversely, implementing more dynamic sparse attentions often results in runtimes significantly slower than computing the full attention using the Flash implementation from Dao et al. (2022). We extend FlashAttention to accommodate a large class of attention sparsity patterns that, in particular, encompass key/query dropping and hashing-based attention. This leads to implementations with no computational complexity overhead and a multi-fold runtime speedup on top of FlashAttention. Even with relatively low degrees of sparsity, our method improves visibly upon FlashAttention as the sequence length increases. Without sacrificing perplexity, we increase the training speed of a transformer language model by $2.0\times$ and $3.3\times$ for sequences of respectively $8k$ and $16k$ tokens.


Graph Neural Networks Go Forward-Forward

arXiv.org Artificial Intelligence

We present the Graph Forward-Forward (GFF) algorithm, an extension of the Forward-Forward procedure to graphs, able to handle features distributed over a graph's nodes. This allows training graph neural networks with forward passes only, without backpropagation. Our method is agnostic to the message-passing scheme, and provides a more biologically plausible learning scheme than backpropagation, while also carrying computational advantages. With GFF, graph neural networks are trained greedily layer by layer, using both positive and negative samples. We run experiments on 11 standard graph property prediction tasks, showing how GFF provides an effective alternative to backpropagation for training graph neural networks. This shows in particular that this procedure is remarkably efficient in spite of combining the per-layer training with the locality of the processing in a GNN.